期刊文献+

随机利率下有违约风险的最优投资组合 被引量:9

Optimal Investment with Stochastic Interest Rate and Default Risk
原文传递
导出
摘要 通过随机最优控制方法讨论随机利率下有违约风险的最优投资组合问题,用约化形式方法对违约风险建模,假定利率和信用利差都服从Cox Ingersoll Ross模型,将最优投资组合问题看作一个三维的随机最优控制问题,给出了相应的Hamilton Jacobi Bellman方程的显式解和最优投资策略. The following optimal investment problem is considered.The financial market consists of a savings account,default-free zero coupon bonds,defaultable zero coupon bonds and stocks.An investor can invest in them without any restrict and tries to maximize the expected utility from his terminal wealth.The default risk is modeled in a reduced form approach.The interest rate and the credit spread are assumed to follow the Cox-Ingersoll-Ross model.The optimal investment problem is treated as an optimal control problem for a three-dimensional stochastic differential system.The associated Hamilton-Jacobi-Bellman equation is solved explicitly,and the optimal portfolio is also given in a closed form.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期382-387,394,共7页 Journal of Fudan University:Natural Science
基金 国家自然科学基金资助项目(101310310) 国家杰出青年科学基金资助项目(10325101) 国家教育部科学基金资助项目(20030246004)
关键词 Cox—Ingersoll-Ross 随机利率 违约风险 随机控制 最优投资组合 Cox-Ingersoll-Ross stochastic interest rate default risk stochastic control optimal investment
  • 相关文献

参考文献10

  • 1Merton R C.Optimum consumption and portfolio rules in acontinuous times model[J].Journal of Economics Theory,1971,3:373-413.
  • 2Korn R,Kraft H.A stochastic control approach to portfolio problems with stochastic interest rates[J].SIAM Journal of Control and Optimization,2001,40:1250-1269.
  • 3Vasicek O.An equilibrium characterisation of the term structure[J].Journal of Financial Economics,1977,5:177-188.
  • 4Ho T S Y,Lee S B.Term structure movements and pricing interest contingent claims[J].Journal of Finance,1986,41:1011-1029.
  • 5Fleming W H,Soner H M.Controlled markov process and viscosity solutions[M].New York:Springer,1993.
  • 6Kraft H.General approach to portfolio problems with stochastic volatility and a verification result for heston's model[EB/OL].http://www.mathematik.uni-kl.de/kraft/welcome2.htm.2002-11-30/2003-10-16.
  • 7Hou Y F.Integrating market risk and credit risk:A dynamic asset allocation perspective[EB/OL].http://www.econ.yale.edu/graduate/placement/2002-03/hou.htm.2003-01/2003-11-06.
  • 8Cox J C,Ingersoll J E,Ross S A.A theory of the term structure of interest rates[J].Econometrica,1985,53:385-407.
  • 9Duffie D,Singleton K.Modeling term structures of default risky bonds[J].Review of Financial Studies,1999,12:177-188.
  • 10Jarrow R,Lando D,Yu F.Default risk and diversification:Theory and applications[EB/OL].http://www.johnson.cornell.edu/faculty/profiles/jarrow/.2001-12-20/2003-04-02.

同被引文献134

  • 1肖喻,肖庆宪.信用风险管理中的多目标决策方法[J].统计与决策,2006,22(4):43-45. 被引量:6
  • 2邓国和,杨向群.有跳风险的随机利率与动态资产分配[J].高校应用数学学报(A辑),2006,21(3):278-284. 被引量:3
  • 3严斌,董进全.理想点法在证券投资组合中的应用[J].内蒙古工业大学学报(自然科学版),2006,25(2):150-154. 被引量:3
  • 4赵江.会员客户忠诚度的实证研究[J].经济管理,2006,32(18):32-36. 被引量:5
  • 5Lion A, Poncet P; On optimal portfolio choice under stochastic rates[J]. Journal of Economic Dynamics & Control, 2001, 25.
  • 6Munk C, Sorensen C. Optimal consumption and investment strategies with stochastic interest rates[J]. Journal of Banking & Finance, 2004, 28.
  • 7Korn R, Kraft H.A stochastic control approach to portfolio problems with stochastic interest rates[J].SIAM Journal of Control and Optimization, 2001, 40.
  • 8Bardhan I, Xiuli C. Martinggale analysis for assets with discontinuous returns[J]. Mathematics of Operation Research, 1995, 20.
  • 9Grasselli M. A stability result for the HAR.A class with stochastic interest rates [J]. Insurance: Mathematics and Economics, 2003, 33.
  • 10Merton R C. Optimum consumption and portfolio rules in acontinuous times model [J].Journal of Economics Theory, 1971, 3.

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部