期刊文献+

隐式重新启动的上、下双对角化Lanczos方法之比较

Comparison between Implicitly Restarted Upper and Lower Bidiagonalization Lanczos Methods for Computing Partial Singular Value Decomposition
在线阅读 下载PDF
导出
摘要 隐式重新启动的上、下双对角化Lanczos方法,是计算大规模矩阵部分奇异值分解常用的方法.研究表明,如果选取特殊的初始向量,则二者等价. Implicitly restarted upper and lower bidiagonalization Lanczos methods are the main methods for computing partial singular value decomposition. It is proved that the two methods are the same if special initial vectors are selected.
作者 牛大田
出处 《大连民族学院学报》 CAS 2005年第3期8-11,共4页 Journal of Dalian Nationalities University
基金 大连民族学院博士科研启动基金资助项目(20046203).
关键词 近似奇异值 近似奇异向量 双对角化Lanczos方法 隐式重新启动 approximate singular value approximate singular vector bidiagonalization Lanczos method implicit restart
  • 相关文献

参考文献14

  • 1.Bjorck A, Grimme E, van Dooren P. An implicitly shift bidiagonalization algorithm for ill-posed systems[J]. BIT, 1994,34: 510-534.
  • 2Golub G H, Luk F T, Overton M L. A block Lanczos method for computation the singular values and corresponding singularvectors of a matrix[J]. ACM Trans. Math. software, 1981,7:149-169.
  • 3Jia Z, Niu D. An Implicitly Restarted Refined Bidiagonalization Lanczos Method for Computing a Partial Singular Value Decomposition[J]. Siam J. Matrix Anal. Appl., 2003,25(1):246-265.
  • 4Larsen R M. Lanczos bidiagonalization with partial reorthogonalization[R]. Department of Computer Science, University of Aarhus, 1998.
  • 5Wang X, Zha H. An implicitly restarted bidiagonal Lanczos method for large-scale singular value problems[R]. ScientificComputing Division, Lawrence Berkeley National Laboratory, 1998.
  • 6Golub G H., Van Loan C F. Matrix Computations 3rd edition[M]. Baltimore: Johns Hopkins University Press, 1996, 452-455.
  • 7Larsen R M. Combining implicit restarts and partial reorthogonalization in Lanczos bidiagonalization [EB/OL]. http://soi.stanford.edu/~rmunk/PROPACK, 2001.
  • 8Sorensen D C. Implicit application of polynomial filters in a k-step Arnoldi method[J]. SIAM J. Matrix Anal. Appl., 1992,13: 357-385.
  • 9Bai Z, Demmel J, Dongarra J,et al. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide[M]. Philadelphia, PA: SIAM, 2000.
  • 10Jia Z. Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm[J]. Linear Algebra Appl., 1999, 287: 191-214.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部