期刊文献+

基于测量方差时变的改进强跟踪滤波算法 被引量:5

Improved algirithm of strong tracking filter based on time-varying variance of measured error
在线阅读 下载PDF
导出
摘要 分析了测量方差预先设定对强跟踪滤波算法的不利影响,提出了一种测量方差自学习修正的强跟踪滤波算法。该滤波算法能够充分利用传感器每次测量带来的新信息,同时,可以进一步优化测量方差,提高了对状态的估计精度,最后,通过仿真计算验证了该算法的有效性。 The influence of the variance of the measured error presupposed on the strong tracking filter is analysed,and a new modified algorithm is presented based on the self-learning and improvement of the variance of the measured error.This new algorithm can not only sufficiently utilize renewed information each time from sensor,but also optimize the variance of the measured error step by step.The accuracy of the state estimation is improved.Finally,the stimulation shows this algorithm can obviously improve the efficiency of maneuvering target tracking.
出处 《传感器技术》 CSCD 北大核心 2005年第6期65-68,共4页 Journal of Transducer Technology
基金 国家自然科学基金资助项目(60272027) 河南省高校杰出科研人才创新工程项目(2003KYCX003)
关键词 强跟踪滤波 测量方差 状态估计 STF(strong tracking filter) variance of measured error state estimation
  • 相关文献

参考文献8

  • 1Sasiadek J Z,Wang Q,Zeremba M B. Fuzzy adaptive kalman filtering for INS/GPS data fusion [J]. Proceedings of the 15th IEEE International Symposium on Intelligent Control Rio Patras GREECE,2000,17 - 19,181 - 186.
  • 2Ahmed N U,Radaideh S M. Modified extended kalman filtering[J].IEEE Transaction on Automatic Control, 1994,39(6):1322 -1326.
  • 3Terzic B,Jadric M. Design and implementation of the extend kalman filter for the speed and motor position estimation of BLDC motor [J].IEEE Trans Ind Electron,2001,48(6) :1065 - 1073.
  • 4叶 斌,徐 毓.强跟踪滤波器与卡尔曼滤波器对目标跟踪的比较[J].空军雷达学院学报,2002,16(2):17-19. 被引量:21
  • 5仲崇权,张立勇,杨素英,李卓函.基于最小二乘原理的多传感器加权融合算法[J].仪器仪表学报,2003,24(4):427-430. 被引量:63
  • 6Zhou D H, Frank P M. Strong tracking filtering of nonlinear time-varying stochastic systems with coloured noise: application to parameter estimation and empirical robustness analysis [J].Int JControl, 1996,65(2):295 - 307.
  • 7刘春恒,梁彦,周东华.强跟踪滤波器在被动跟踪中的应用[J].清华大学学报(自然科学版),2003,43(7):880-882. 被引量:8
  • 8Ljung L. Asymptotic behavior of extended kalman filter as a parameter estimator for linear systems[J].IEEE Tansaction on Automatic Control, 1979,24(1):36 - 50.

二级参考文献13

  • 1孙红岩,毛士艺,林品兴.多传感器数据分层融合的性质[J].电子学报,1996,24(6):55-61. 被引量:29
  • 2[4]Brian D O,et al.Optimal Filtering[M].Prentice-Hall,Inc.,1979.
  • 3Hammel S E, Aidala V J. Observability requirements for three-dimensional tracking via angle measurements [J].IEEE Trans on AES, 1978, AES-21(3): 200-207.
  • 4Aidala V J. Kalman filter behaviour in bearings only tracking applications [J]. IEEE Trans on AES, 1979, AES-15(1):29 - 39.
  • 5Aidala V J, Nardone S C. Biased estimation properties of the pseudo linear tracking filter [J]. IEEE Trans on AES,1982, AES-18(3): 433-441.
  • 6Koteswara S R. Pseudo-linear estimator for bearings-only passive targets tracking [J]. IEE Proc--Radar, Sonar and Navigation, 2001, 148(1): 16-22.
  • 7ZHOU Donghua, XI Yugeng, ZHANG Zhongjun. Extension of Friedland's separate-bias estimation to randomly timevarying bias for nonlinear systems [J]. IEEE Trans on AC,1993, 38(8): 1270-1273.
  • 8ZHOU Donghua, Frank P M. Fault diagnostics and fault tolerant control [J]. IEEE Trans. on AES, 1998, 34(2):420 - 427.
  • 9John M.Richardson,Kenneth A.March Fusion of Muhisensor Data.The International Journal of Robotics Research,1988,7(6):78~96.
  • 10罗森林,张怀广,王越,周思永.加权分层卡尔曼滤波融合算法[J].北京理工大学学报,1998,18(5):587-591. 被引量:2

共引文献88

同被引文献35

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部