期刊文献+

二氧化硅薄膜比热容分子动力学模拟 被引量:1

Molecular dynamics simulation of specific heat capacities of SiO_2 thin films
在线阅读 下载PDF
导出
摘要 针对纳米量级薄膜比热容测定的困难,根据实验值建立了SiO2(100)薄膜物理模型.选取可靠的势能函数描述了分子间的相互作用,采用分子动力学模拟了它的比热容变化规律,在100~600K下给出了厚度在1~5nm的薄膜比热容对温度和厚度的依赖关系.计算结果表明,SiO2薄膜在300K下比热容明显低于相同条件下常规体材料的比热容,且随薄膜厚度的增加而增大;随温度升高,比热容变大,这同体材料是一致的.模拟结果揭示了SiO2薄膜比热容的微尺度效应,与理论分析基本吻合,可为半导体微器件的设计提供资料. Due to the difficulties of measurement for the specific heat capacities of nano-films, a model of SiO2(100) thin solid films is constructed based on experimental values and a reliable potential function to present the interaction of atoms is chosen. Specific heat capacity is simulated using molecular dynamics. Size and temperature dependent effects of the films with l-5 nm at 100-600 K are described. The specific heat capacities of SiO2 thin films are evidently smaller than those of bulk materials in the same condition and decrease with the reduction of thickness at 300 K. Meanwhile they increase as temperature becomes higher, which is the case with bulk materials. The microscale effect is revealed and the results are in agreement with some theoretical analysis proposed in others' literatures, which offer a reference for the design of micro-devices.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2005年第3期313-315,共3页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(59995550-5 50135040).
  • 相关文献

参考文献22

  • 1TIEN C L, CHEN G. Challenge in microscale conductive and radiative heat transfer [J]. ASME J of Transfer, 1994, 166: 799-807.
  • 2过增元.国际传热研究前沿──微细尺度传热[J].力学进展,2000,30(1):1-6. 被引量:157
  • 3ABRAMSON A R, TIEN C L. Recent developments in microscale thermophysical engineering [J]. Microscale Thermophys Eng, 1999, 3:229-244.
  • 4HEYES D M. The Liquid State-Applications of Molecular Simulation [M]. Brisbane: John Wiley & Sons, 1998.
  • 5冯晓利,李志信,梁新刚,过增元.纳米薄膜导热系数的分子动力学模拟[J].科学通报,2000,45(19):2113-2117. 被引量:11
  • 6ALLEN M P,TILDESLEY D J. Computer Simulation of Liquids [M]. Oxford: Clarendon Press, 1989.
  • 7SUN H. COMPASS: An ab Initio forcefield optimized for condensed-phase applications - overview with details on alkane and benzene compounds [J]. Phys Chem B, 1998, 102(38):7338-7364.
  • 8方俊鑫, 陆栋. 固体物理学[M]. 上海: 上海科学出版社, 1993.
  • 9FRENKEL & SMIT. 分子模拟--从算法到应用[M]. 汪文川,周健,曹达鹏,等. 北京: 化学工业出版社, 2002.
  • 10RAPAPORT D C. The Art of Molecular Dynamics Simulation [M]. Cambridge: Cambridge University Press, 1995.

二级参考文献14

共引文献175

同被引文献23

  • 1胡明雨,陈震,杨决宽,庄苹,朱健,陈云飞.二氧化硅薄膜导热系数试验研究[J].东南大学学报(自然科学版),2005,35(3):396-399. 被引量:7
  • 2GLADKIKH N T, BOGATYRENKO S I, KRYSHTAL A P, et al. Melting point lowering of thin metal films (Me = In, Sn, Bi, Pb) in Al/Me/Al film system [J]. Appl Surf Sci, 2003, 219:338-346.
  • 3SANDEEP P, VIJAY S. Size dependence of thermal expansion of nanostructures [J]. Phys Rev:B, 2005, 72 (11): 113404- 1 - 4.
  • 4ORAIN S, SCUDELLER Y, BROUSSE T. Structural and microstructural effects on the thermal conductivity of zirconia thin films [J]. Microscale Thermophysical Engineering, 2001, 5 (4): 267-275.
  • 5DINESH P. Molecular dynamics simulations of biological membranes in the presence of cryoprotectants [D]. Louisiana State University, 2005.
  • 6BORN M, HUANG K. Dynamical theory of crystal lattices [M]. Oxford: Clarendon Press, 1968.
  • 7BOTTGER H. Principles of the theory of lattice dynamics [M]. Weinheim: Physik-Verlag, 1983.
  • 8SEMWAL B S, SHARMA P K. Thermal conductivity of an anharmonic crystal [J]. Phys Rev: B, 1972, 5: 3909- 3914.
  • 9LINDERMANN F A. fiber die berechnung molecularer eigenfrequenzen[J]. Z Phys, 1910, 11:609-612.
  • 10MARTINT C J, O'CONNOR D A. An experimental test of Lindemann's melting law [J]. J Phys C: Solid State Phys, 1977, 10: 3521-3526.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部