期刊文献+

一类含间隙系统的分岔与混沌的形成过程 被引量:37

BIFURCATION AND CHAOS OF A SYSTEM WITH A PAIR OF SYMMETRIC SET-UP ELASTIC STOPS
在线阅读 下载PDF
导出
摘要 用变步长四阶Runge-Kutta法,通过对一类单自由度含间隙系统一组系统参数的仿真,首次证明了单自由度含间隙系统中不仅存在叉式分岔、倍周期分岔,而且还存在Hopf分岔,并且给出了发生Hopf分岔的具体系统参数以及Hopf分岔与混沌的形成过程。对其分岔与混沌行为的研究为工业实际中含间隙机械系统和冲击振动系统的优化设计提供了理论依据。 Bifurcation and chaos of a one-degree-of-freedom system with a pair of symmetrically set-up elastic stops is investigated by numerical simulations. It is investigated by numerical method and concluded that in this kind of one-degree-freedom system exists Hopf bifurcation. An important field in vibration engineering is the dynamics of mechanical systems with piecewise smooth features, such as existing clearance, constraint, friction and hysteresis, It is possible to optimize practical system parameters by investigation of bifurcation and chaos.
出处 《振动与冲击》 EI CSCD 北大核心 2005年第3期47-49,i005,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50475109)
关键词 形成过程 间隙 HOPF分岔 系统参数 单自由度 倍周期分岔 优化设计 振动系统 机械系统 混沌行为 变步长 四阶 Bifurcation (mathematics) Chaos theory Computer simulation Friction Hysteresis Numerical methods Vibrations (mechanical)
  • 相关文献

参考文献7

  • 1Whiston G S. Singularities in vibro-impact dynamics [J]. Journal of Sound and Vibration, 1992,152(3):427-460.
  • 2Hu H Y. Detection of grazing orbits and incident bifurcations of a forced continuous piecewiselinear oscillator[J]. Journal of Sound and Vibration,1994,187(3):485-493.
  • 3Luo Guanwei, Xie Jianhua. Bifurcation and chaos in a system with impacts [J]. Physica D, 2001, 148:183-200.
  • 4胡海岩.分段光滑机械系统动力学的进展[J].振动工程学报,1995,8(4):331-341. 被引量:34
  • 5Knudsen J. Massih A R. Dynamic stability of weakly damped oscillators with elastic impacts and wear[J].Journal of Sound and Vibration, 2003,263:175-204.
  • 6Hu Haiyan. Controlling chaos of a periodically forced nonsmooth mechanical system[J].Acta Mechanica Sinica, 1995,11(3):251-258.
  • 7Natsiavas S. Journal of Sound and Vibration, 1990,141(1):97-102.

二级参考文献14

共引文献33

同被引文献224

引证文献37

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部