期刊文献+

用遥感技术计算森林叶面积指数——以江西省兴国县为例 被引量:32

Retrieving Leaf Area Indexes for Coniferous Forest in Xingguo County, Jiangxi Province, in Use of Landsat ETM+ Images
在线阅读 下载PDF
导出
摘要  以江西省兴国县为研究区域,基于不同时相的LandsatETM+地面反射率图像,计算了RS、NDVI和RSR3种植被指数,并与野外观测的叶面积指数(LAI)数据建立相关关系,从而进行了LAI的反演研究.研究发现,对于针叶林地区,一月份图像也可用来反演LAI,只是预测值较五月偏低.而同一时相的原始图像和反射率图像的反演结果表明,去除传感器自身和大气辐射影响的地面反射率图像,更能真实地反演地表植被覆盖度.此外,在研究区森林覆盖度较高,林种较单一的情况下,RSR同LAI的关系比其他植被指数的相关性好,反演的精度也较高. <Abstrcat>Leaf area index (LAI) is a parameter of the vegetation structure, and is important for a quantitative analysis of many physical and biological processes related to the dynamic change of vegetation and its effects on carbon cycle, hence the change of the global environment and climate. In this paper, LAI is estimated in Xingguo County based on the correlation between the field-measured LAI and the vegetation indexes (VI). After making the geometric and atmospheric corrections of the asynchronous high-resolution Landsat ETM+ images, three VIs (SR, NDVI, RSR) are derived, and their separate correlations with LAI are investigated. According to the analysis of non-liner relationships between the VIs and LAI, it was found that the precision of the retrieved LAI was high, especially when using the atmospheric-corrected reflectance image. So, it is feasible to retrieve LAI in great region by using the remote sensing data. The correlation between RSR and LAI was higher than that between LAI and other two VIs. It is because the forest coverage of Xingguo county is high, and the forest type is not complicated. Moreover, for coniferous forest, though there is defoliation in winter, the LAI could still be estimated by using the remote sensing data due to the lack of grass and shrub. In general, the predicted value in January was lower than that in May, which was consistent with the reality.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期253-258,共6页 Journal of Nanjing University(Natural Science)
基金 加拿大CIDA项目"中国碳循环研究"
关键词 遥感 森林 叶面积指数 植被指数 大气订正 remote sensing,coniferous forest,leaf area index,vegetation index,atmospheric correction
  • 相关文献

参考文献11

  • 1田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333. 被引量:574
  • 2赵萍,冯学智,王雷,赵书河.江南丘陵区土地利用/覆被分类[J].南京大学学报(自然科学版),2003,39(3):404-410. 被引量:9
  • 3惠凤鸣,田庆久,金震宇,李海涛.植被指数与叶面积指数关系研究及定量化分析[J].遥感信息,2003,25(2):10-13. 被引量:53
  • 4Chen J M. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and groundmeasurement. Remote sensing of environment,2002,80:165-184.
  • 5Chen J M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. IEEE Transactions on Geoscience and Remote Sensing,1996,34 : 1 353- 1 368.
  • 6Chen J M, Cihlar J. Retrieving Leaf Area Index for Boreal Conifer Forests Using Landsat TM Images.Remote Sensing of Environment, 1996, 55:153-162.
  • 7Hu B X, Miller J R. Retrieval of the canopy leaf area index in the BOREAS flux tower sites using linear spectral mixture analysis. Remote Sensing of Environment, 2004,89 : 176- 188.
  • 8Qi J ,Huete,R A, et al. Interpretation of vegetation indices derived from multi-temporal SPOT images.Remote Sensing of Enviroment, 1993,44 : 89- 101.
  • 9.[EB/OL].http://modis-atmos, gsfc. nasa. gov,.
  • 10Chen J M, Pavlic G, Brown L, et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sensing of Environment, 2002:165 - 184.

二级参考文献19

  • 1田庆久 闵祥军.遥感信息定量化理论、方法与应用[A]98’遥感研究新进展[A]..中国科学院地理学会遥感分会大连会议论文集[C].,1998.20—29.
  • 2Tanre D, Deroo C, Duhaut P, et al. The Second Simulation of the Satellite in the Solar Spectrum(6S) User Guide. U. S. T. de Lille,59655Villeneuved' aseq, France:L aboratoired' Optique Atmospherique, 1986.
  • 3Cheng J M , Cihlar J. Retrieving Leaf Area Index of Boreal Conifer Forest Using Landsat TM Images[J]. Remote Sens. Environ., 1996, 55 ; 153- 162.
  • 4Running S W et al. Remote Sensing of Coniferous Forest Leaf Area[J]. Ecology, 1986, 67(1) :273 - 276.
  • 5Ruimy A. , Seugier B. Methodology for the Estimation of Terrestrial Net Primary Production from Remotely Sensed Data[J]. Geophysical Research, 1994, 97:18515 - 18521.
  • 6Price J C, Bausch J C. Leaf Area Index Estimation from Visible and Near-infrared Reflectance Data[J]. Remote Sens. Environ., 1995, 52 : 55 -65.
  • 7J M Chen, G Pavlic, L Brown, et al. Derivation and Validation of Canada-wide Coarse-resolution Leaf Area Index Maps Using High-resolution Satellite Imagery and Ground Measurements[J ]. Remote Sensing of Environment, 2002, 80(1) : 165 - 184.
  • 8J Qi, Y H Kerr, et al. Leaf Area Index Estimates Using Remotely Sensed Data and BRDF Models in a Semiarid Region[J]. Remote Sensing of Environment, 2000, 73 : 18 - 30.
  • 9J Qi, Huete, A R, et al. Interpretaion of Vegetaion Indices Derived :from Multi-temporal SPOT Images. Remote Sensing of Environment, 1993,44: 89- 101.
  • 10Qi J,Remote Sens Environ,1993年,44卷,89页

共引文献645

同被引文献539

引证文献32

二级引证文献356

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部