期刊文献+

三维粘弹性分层介质中平稳随机波的传播 被引量:3

Stationary Random Waves Propagation in 3D Viscoelastic Stratified Solid
在线阅读 下载PDF
导出
摘要  研究平稳随机波在粘弹性分层横观各向同性介质中的传播问题· 将岩层考虑为分层介质,各层性质不同,岩层位于基岩上面,并且认为基岩比岩层刚很多,在基岩处给出随机激励· 在频率和波数域中将控制方程化为常微分方程求解· 对常微分方程,应用两点边值问题的精细积分法进行求解· 因此。 Propagation of stationary random waves in viscoelastic stratified transverse isotropic materials is investigated. The solid was considered multi_layered and located above the bedrock, which was assumed to be much stiffer than the soil, and the power spectrum density of the stationary random excitation was given at the bedrock. The governing differential equations are derived in frequency and wave_number domains and only a set of ordinary differential equations (ODEs) must be solved. The precise integration algorithm of two_point boundary value problem was applied to solve the ODEs. Thereafter, the recently developed pseudo_excitation method for structural random vibration is extended to the solution of the stratified solid responses.
作者 高强 林家浩
出处 《应用数学和力学》 EI CSCD 北大核心 2005年第6期723-733,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10472023) 教育部高等学校博士学科点专项科研基金资助项目(20040141020)
关键词 分层介质 精细积分法 虚拟激励法 波传播 随机振动 layered material precise integration pseudo-excitation method wave propagation random vibration
  • 相关文献

参考文献27

  • 1Ewing W M,Jardetzky W S, Press F. Elastic Waves in Layered Media [ M ].New York: McGral-Hill,1957.
  • 2Brekhovskikh L M. Waves in Layered Media [ M]. New York: Academic Press, 1980.
  • 3Aki K, Richards P G. Quantitative Seismology [ M]. San Francisco: W H Freeman and Company,1980.
  • 4Timoshenko S P, Goodier J N. Theory of Elasticity [ M]. New York: McGraw-Hill, 1951.
  • 5Graff K F. Wave Motion in Elastic Solids [ M]. Oxford: Clarendon Press, 1975.
  • 6Achenback J D. Wave Propagation in Elastic Solids[M] .Amsterdam:the North-Holland, 1973.
  • 7Doyle J F. Wave Propagation in Structures[ M] . New York: Springer, 1989.
  • 8Rizzi S A, Doyle J F. Spectral analysis of wave motion in plane solids with boundaries [ J]. Trans ASME Journal of Vibration and Acoustics , 1992,114(2): 133-140.
  • 9Rizzi S A, Doyle J F. Spectral element approach to wave motion in layered solids [ J ]. Trans ASME Journal of Vibration and Acoustics, 1992,114(4): 569-577.
  • 10Alshaikh I A B U, Turhan D, Mengi Y. Two-dimensional transient wave propagation in viscoelastic layered media[J]. Journal of Sound and Vibration ,2001,244(5) :837-858.

同被引文献121

引证文献3

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部