期刊文献+

具非线性传染率染病年龄结构SIR流行病模型渐近分析 被引量:2

An Asymptotic Analysis of an Infection-Age-Dependent SIR Epidemic Model with Nonlinear Infectivity
在线阅读 下载PDF
导出
摘要 研究了一类具非线性传染率染病年龄结构SIR流行病传播的数学模型的动力学性态,得到了疾病绝灭和持续生存的阈值条件———基本再生数.当基本再生数小于或等于1时,仅存在无病平衡点,且在其小于1的情况下,无病平衡点全局渐近稳定,疾病将逐渐消除;当基本再生数大于1时,存在不稳定的无病平衡点和唯一的局部渐近稳定的地方病平衡点,疾病将持续存在.本文的结论包含了相应常微分方程模型已有的相关结论. The dynamical behavior of an infection-age-dependent SIR epidemic model with nonlinear infectivity is studied and the threshold, a basic reproductive number which determines the outcome of the infectious disease, is found. When the basic reproductive number is less than or equal to 1, there exists only the disease-free equilibrium. Moreover, when the basic reproductive number is less than 1, the disease-free equilibrium is globally asymptotically stable and the disease will die out, whereas, when the basic reproductive number is greater than 1, there exist both the disease-free equilibrium which is unstable and the endemic equilibrium which is locally asymptotically stable, and the disease will persist. The paper concludes with the relevant results of the corresponding ODE models.
出处 《应用科学学报》 CAS CSCD 北大核心 2005年第3期315-318,共4页 Journal of Applied Sciences
基金 国家自然科学基金(30170823)
  • 相关文献

参考文献5

二级参考文献10

  • 1陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998..
  • 2Thieme H R, Castillo-Chavez C. How may infection age-dependent infectivity affect the dynamics of HIV/AIDS? [J]. Siam J Appl Math, 1993, 53(5): 1 447-1 479.
  • 3Feng Z, Iannelli M, Milner F A. A two-strain tuberculosis model with age of infection [J]. Siam J Appl Math, 2002,62(5):1 634-1 656.
  • 4Castillo-Chavez C, Feng Zhilan.Global stability of an age structure model for TB and its applications to optional vaccination strategies [J]. Mathematical Biosciences, 1998, 151(2):135-154.
  • 5Xiao Yanni, Chen Lansun, Bosch F V D. Dynamical behavior for a stage-structured SIR infectious disease model [J]. Nonlinear Analysis: Real World Applications, 2002, 3(2):175-190.
  • 6Song Baojun, Castillo-Chavez C, Aparicio J P. Tuberculosis models with fast and slow dynamics: the role of close and casual contacts [J]. Mathematical Biosciences, 2002, 180(1/2): 187-205.
  • 7陈兰荪,非线性生物动力系统,1993年
  • 8Liu W M,J Math Biol,1987年,25卷,359页
  • 9Liu W M,J Math Biol,1986年,23卷,187页
  • 10陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998..

共引文献68

同被引文献15

  • 1徐文雄,张仲华.预防接种情况下非线性饱和接触率SIR流行病模型动力学性态研究[J].工程数学学报,2004,21(5):774-778. 被引量:4
  • 2徐文雄,张太雷.一类非线性SEIRS流行病传播数学模型[J].西北大学学报(自然科学版),2004,34(6):627-630. 被引量:13
  • 3徐文雄,张仲华,徐宗本.具有一般形式饱和接触率SEIS模型渐近分析[J].生物数学学报,2005,20(3):297-302. 被引量:23
  • 4Horst R Thieme, CarlosCastillo-Chavez. How may infection age-dependent infectivity affect the dynamics of HIV/AIDS? [J]. Siam J Appl Math,1993,53(5):1 447-1 479.
  • 5马知恩(MaZhi-en).种群生态学的数学建模与研究(The Mathematical Modeling and Study of the Population Ecology)[M].合肥:安徽教育出版社(Hefei:Anhui Education Press),1996.
  • 6Webb G F. Theory of Nonlinear Age-Dependent Population Dynamics[ M ]. New York: Marcel Dekker, 1985.
  • 7Miller R K. Nonlinear Voherra Integral Equations [ M ]. New York: W A Benjamin Inc,1971.
  • 8叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1999..
  • 9王明新.非线性抛物型方程[M].北京:科学出版社,1997..
  • 10Conway E D,Smoller J A.A comparison theorem for systems of reaction-diffusion equations[J].Comm Part Diff Eqns,1977,2(7):679-697.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部