期刊文献+

李杨理论在非平衡相变中的研究 被引量:1

The Lee-Yang Theory for Nonequilibrium Phase Transitions
在线阅读 下载PDF
导出
摘要 研究了李-杨相变理论在沙粒分离的urn模型非平衡系统中的应用.有效配分函数写成有效逸度z的多项式.在热力学极限下,有效配分函数的零点位于z复平面的单位圆上;在实际控制参数复平面中,零点会聚于模型的二级相变点.进一步验证了李-杨平衡相变理论在非平衡相变中的应用. The Lee-Yang theory is used to study the nonequilibrium phase transitions of an urn model for the separation of sand. Effective partition function is expressed as a polynomial of the effective fugacity z. Numerical calculations show that in the thermodynamic limit the zeros of the effective partition function are located on the unit circle in the complex z plane. In the complex plane of the actual control parameter, certain roots converge to the second-order phase transition point. Thus, it has been verified that the distributions of zeros at the second-order nonequilibrium phase transition of this model follow the patterns known in the Yang-Lee equilibrium theory.
出处 《南京工程学院学报(自然科学版)》 2005年第2期6-10,共5页 Journal of Nanjing Institute of Technology(Natural Science Edition)
关键词 李-杨理论 配分函数 逸度 urn模型 非平衡系统 the Lee-Yang theory partition function fugacity the urn model nonequilibrium system
  • 相关文献

参考文献12

  • 1[1]Schmittmaann B,Zia R K P.Statistical Mechanics of Driven Diffusive Systems in Phase Transitions and Critical Phenomena[M].Academic ,London,1995.
  • 2[2]Privman V.Nonequilibrium Statistical Mechanics in One dimension[M].University,Cambridge,1997.
  • 3[3]Mukamel D.Phase Transitions in Nonequilibrium Systems[M].Institute of Physics,Bristol,2000
  • 4[4]Arndt P F.Yang-Lee Theory for a Nonequilibrium Phase Transition[J].Phys Rev Lett,2000,84(5) :814 - 817.
  • 5[5]Blythe R A,Evans M R.Lee-Yang Zeros and Phase Transitions in Nonequilibrium Steady States[J].Phys Rev Lett ,2002,89(8):080601 -080604.
  • 6[6]Bena I,Coppex F,Droz M,Lipowski A.Yang-Lee Zeros for an Urn Model for the Separation of Sand[J].Phys Rev Lett ,2003,91(16):160602-160605.
  • 7[7]Yang C N,Lee T D.Statistical Theory of Equations of State and Phase transitions.Ⅰ.Theory of Condensation[J].Phys Rev,1952,87(3) :404 - 409.
  • 8[8]Lee T D,Yang C N.Statistical Theory of Equations of State and Phase transitions.Ⅱ.Lattice Gas and Ising Model[J].Phys Rev,1952,87(3) :410 - 419.
  • 9[9]Ehrenfest P,Ehrenfest T.The Conceptual Foundations of the Statistical Approach in Mechanics[M].Dover,New York,1990.
  • 10[10]Lipowski A,Droz M.Urn model of separation of sand[J].Phys Rev E,2002,,65(3) :031307 - 0313314.

同被引文献34

  • 1蔡绍洪.平衡与非平衡两类相变的临界联系[J].电子科技大学学报,1997,26(S1):171-179. 被引量:4
  • 2柯杰,韩布兴,阎海科,柯以侃.气体在克拉玛依九区稠油中的溶解度关联与计算[J].石油学报,1994,15(3):91-95. 被引量:9
  • 3Saeidi A, Handy L L. Flow and phase behavior of gas condensate and volatile oils in porous media[R], SPE 4891-MS, 1974.
  • 4Jacoby R H, Berry V J. A method for predicting depletion performance of a reservoir producing volatile crude oil[J]. Petroleum Transactions, AIME, 1957, 210: 27-33.
  • 5Woods R W. Case history of reservoir performance of a highly volatile type oil reservoir[J]. Petroleum Transactions, AIME, 1955, 204: 156-159.
  • 6Mackay D, Shiu W Y, Sutherland R P . Determination of air-water Henry's Law constants for hydrophobic pollutants[J]. Environmental Science & Technology, 1979, 13(3): 333-337.
  • 7Sotelo J L, Beltran F J, Benitez F J, et al. Henry’s Law constant for the ozone-water system[J]. Water Research, 1989, 23(10): 1239-1246.
  • 8Standing M B. A pressure-volume-temperature correlation for mixtures of California oil and gases[C]//API Drilling and Production Practice Conference. Washington: American Petroleum Institute, 1947.
  • 9Lasater J A. Bubble point pressure correlation[J]. Journal of Petroleum Technology, 1958, 10(5): 65-67.
  • 10Vasquez M, Beggs H D. Correlations for fluid physical property prediction[J]. Journal of Petroleum Technology, 1980,32(6): 968-970.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部