期刊文献+

COINCIDENCE THEOREMS IN PRODUCT G-CONVEX SPACES 被引量:2

COINCIDENCE THEOREMS IN PRODUCT G-CONVEX SPACES
在线阅读 下载PDF
导出
摘要 By applying the technique of continuous partition of unity, some new coincidence theorems for a better admissible mapping and a family of set-valued mappings defined on the product G-convex spaces are proved. Theorems of this paper improve, unify and generalize many important coincidence theorems and collectively fixed point theorems in recent literature. By applying the technique of continuous partition of unity, some new coincidence theorems for a better admissible mapping and a family of set-valued mappings defined on the product G-convex spaces are proved. Theorems of this paper improve, unify and generalize many important coincidence theorems and collectively fixed point theorems in recent literature.
作者 丁协平
出处 《Acta Mathematica Scientia》 SCIE CSCD 2005年第3期401-407,共7页 数学物理学报(B辑英文版)
基金 This project is supported by the NNSF of China (19871059) and the Natural Science Foundation of Sichuan Education Department (2003A081).
关键词 better admissible mapping coincidence theorem collectively fixed point G-convex space better admissible mapping coincidence theorem collectively fixed point G-convex space
  • 相关文献

参考文献2

二级参考文献40

  • 1Tarafdar E. A fixed point theorem and equilibrium point of an abstract economy[J]. J Math Econom,1991,20(2):211-218.
  • 2LAN Kun-Quan, Webb J. New fixed point theorems for a family of mappings and applications to problems on sets with convex sections[J]. Proc Amer Math Soc,1998,126(4):1127-1132.
  • 3Ansari Q H, Yao J C. A fixed point theorem and its applications to a system of variational inequalities[J]. Bull Austral Math Soc,1999,59(2):433-442.
  • 4Singh S P, Tarafdar E, Watson B. A generalized fixed point theorem and equilibrium point of an abstract economy[J]. J Computat Appl Math,2000,113(1/2):65-71.
  • 5Tarafdar E. Fixed point theorems in H-spaces and equilibrium point of abstract economies[J]. J Austral Math Soc Ser A,1992,53(2):252-260.
  • 6CHANG Shi-sheng, Lee B S, Cho Y J, et al. On the generalized quasi-variational inequality problems[J]. J Math Anal Appl,1996,203(3):686-711.
  • 7LIN Lai-jiu, Park S. On some generalized quasi-equilibrium problems[J]. J Math Anal Appl,1998,224(1):167-181.
  • 8Patk S. Continuous selection theorems in generalized convex spaces[J]. Numer Funct Anal Optimiz,1999,20(5/6):567-583.
  • 9DING Xie-ping. New H-KKM theorems and their applications to geometric property, coincidence theorems, minimax inequality and maximal elements[J]. Indian J Pure Appl Math,1995,26(1):1-19.
  • 10DING Xie-ping. Gerenalized variational inequalities and equilibrium problems in generalized convex spaces[J]. Computera Math Applic,1999,38(7/8):180-197.

共引文献16

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部