期刊文献+

Cox-Ingersoll-Ross模型的统计推断 被引量:2

Statistical Inference in Cox-Ingersoll-Ross Model
在线阅读 下载PDF
导出
摘要 本文研究了Cox—Ingersoll—Ross模型的统计推断问题.给出了CIR过程的平稳均值m与平稳方差v的矩估计,并利用m和v给出了CIR过程中尺度参数α与波动率β之间的关系,讨论了参数α的条件矩估计和渐近极大似然估计.并通过数值模拟对条件矩估计,渐近极大似然估计这两种方法作了比较. In this paper, the problem of estimating coefficients in Cox-Ingersoll-Ross model are studied. The moment estimates of the equilibrium mean m and the equilibrium variance v of the CIR process is given. By assuming the parameters m and v “ known ”, the relation between the scale parameter α and the volatility β is obtained. The conditional moment estimate and the approximate maximum likelihood estimate are discussed. The comparing of two approach are given by simulation.
作者 陈萍 杨孝平
出处 《应用概率统计》 CSCD 北大核心 2005年第3期285-292,共8页 Chinese Journal of Applied Probability and Statistics
  • 相关文献

参考文献13

  • 1Cox, J.C., Ingersoll, J.E., Jr. and Ross, S.A., An intertemporal general equilibrium model of asset prices, Econometrica, 53(2)(1985), 363-384.
  • 2Cox, J.C., Ingersoll, J.E., Jr. and Ross, S.A., A theory of the term structure of interest rates, Econometrica, 53(2)(1985), 385-407.
  • 3Heston, S., A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, 6(2)(1993), 327-343.
  • 4Fouque, J.P., Papanicolaou, G., Sipcar, K.R., Derivatives in Financial Markets with Stochastic Volatility, Cambridge University, 2000.
  • 5Karlin, S. and Taylor, H.M., A Second Course in Stochastic Processes, Academic Press, 1981.
  • 6~rong, E. and Hajek, B., Stochastic Processes in Engineering Systems, Springer-Verlag, New York,1985.
  • 7Robinson, P.M., Noparametric estimation for time series models, J. Time Series Anal., 4(1983),185-208.
  • 8Karatzas, I. and Steven, E.S., Brownian Motion and Stochastic Calculus, Springer-Verlag, 1988.
  • 9Dacunha-Castelle, D. and Florens-Zmirou, D., Estimation of the coefficients of a diffusion from discrete observations, Stochastics, 19(1986), 263-284.
  • 10Liptser, R.S. and Shiryayey, A.N., Statistic of Random Processes, I, II, New York: Springer-Verlag,1997.

二级参考文献11

  • 1Garman M, Klass M J. On the estimation of security price volatilities from historical data[J]. J Business,1980;53:67 - 78
  • 2Thomas S K, Bernhard M, Mihali Z. Valuation of investments in real assets with implications for the stock prices[J]. SIAM J Control Optim,1999;38(6) :2082 - 2102
  • 3Donoho D L, Johnstone I M. Minimax estimation via wavelet shrinkage[J]. Ann Statist, 1998:26(3):879 - 921
  • 4Bernt K. Stochastic differential equations [M]. An introduction with applications, Fourth edition,Springer-Verlag, 1995
  • 5Kerkyacharian G,Picard D. Density estimation in besov space[J]. Stat Prob Lett,1992;13:15 -24
  • 6Delyon B,Juditsky A. On minamix wavelet estimatiors[J]. Appl Comput Harmonic Analysis, 1996;3:215- 228
  • 7Hall P,Heyde C. Martingale limit theory and its applicatiom[M]. 1980, Academic Press. Inc
  • 8Karatzas I. Brownian motion and stochastic calculus[M]. 1987, Springer-Verlag.
  • 9Delyon B,Juditsky A. On minamix wavelet estimatiors[J]. Appl Comput. Harmonic Analysis, 1996; 3:215 - 228
  • 10张双林,沙秋英,程美玉.回归函数非线性小波估计的一致强相合性[J].应用概率统计,1999,15(4):375-380. 被引量:4

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部