摘要
对K-HarmonicMeans算法进行扩展,考虑到数据点对不同类的隶属关系,将模糊的概念应用到聚类中,提出了模糊K-HarmonicMeans算法,推导出聚类中心和模糊隶属度的迭代公式.在中心迭代聚类算法统一框架的基础上,推导出FKHM算法聚类中心的条件概率表达式以及在迭代过程中的数据加权函数表达式.最后,用Folkes&Mallows指标对聚类结果进行评价.实验表明,模糊K-HarmonicMeans(KHM)算法在聚类对于初值不敏感的同时提高了聚类结果的精确度,达到较好的聚类效果.
Considering the fact that data belong to several clusters to some extent, we import the fuzzy membership of data to clustering analysis, and propose the fuzzy K-Harmonic Means clustering (FKHM)algorithm. The iterative expressions for cluster center and fuzzy membership are deduced respectively. We then describe a unified expression for the iteration of centers, and deduce the conditional probability expression for the centers and data weight functions for FKHM. Finally, the Folkes & Mallows index is used to evaluate the clustering result. Experiment indicates that the fuzzy K-Harmonic Means algorithm can not only overcome the sensitivity to the initial centers, but also improve the quality of clustering results, compared with the K-Harmonic Means.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2005年第4期603-606,638,共5页
Journal of Xidian University