期刊文献+

改进遗传算法全局收敛性分析 被引量:14

Global convergence analysis of improving genetic algorithm
在线阅读 下载PDF
导出
摘要 传统的遗传算法大多数没有给出收敛性准则。一类新的改进的遗传算法被提出,该算法即考虑了优化问题的全局性要求——每一步构造一个新函数,而这往往却比局部最优理论和方法困难得多;同时通过对选择算子的改进,对遗传算法后期进化缓慢问题得到了有效控制,最后给出了算法的收敛性证明以及收敛性准则。实例证明该算法是有效的。 The most traditional genetic algorithms didn't give a termination rule. A new kind of genetic algorithm is presented. In this algorithms, an algorithm for finding global minimization was proposed each phase must constructed a new function, which was more difficult than local minimization. Meanwhile a selection operator was presented to make the place of the traditional one. It could prevent the latter slow evolution. The convergence of this algorithm is proved. A termination rule is given. The algorithm is efficiency proved with some instances.
出处 《计算机工程与设计》 CSCD 北大核心 2005年第7期1695-1697,共3页 Computer Engineering and Design
基金 国家自然科学基金项目(60273075)。
关键词 遗传算法 选择算子 收敛准则 genetic algorithm selection operator convergence rule
  • 相关文献

参考文献9

  • 1Whitley D. The genetic algorithm and selection pressure: Why rank-based allocation reproduction trials is best[A]. In: Schaffer J, proceedings of the 3rd international conference on genetic algorithm[C]. Los Altos: Morgan Kaufmann Publishers, 1989.
  • 2Davis L, Hand book of genetic algorithms[M]. New York: Van Nostrand Reinhold, 1991.
  • 3Potts T C, Terri D G, Surya B Y. The development and evolution of an improved genetic algorithm based on migration on artificial selection[J].IEEE Transaction on SMC, 1994,24(1):73-86.
  • 4Rudolph G. Convergence properties of canonical genetic algorithms[J]. IEEE Trans on Neural Networks, 1994,5(1): 96-101.
  • 5Horst R, Tuy H. Global optimization: Deterministic approaches[M].2nd Revised Edition. Springer Verlag, Heidelberg, 1993.
  • 6Reiner Horst, Panos M Pardalos, Nguyen V Thoai. Introduction to global optimization [M]. Second Edition. Kluwer Academic Publishers,2000.
  • 7Chung Kai-lai. Elementary probality theory with stochastic processes[M]. 2nd ed. Springer-Verlag, 1974.
  • 8Suzuki J A. Markov chain analysis on simple genetic algorithm[J]. IEEE Trans SMC, 1995, 25(14):655-659.
  • 9Goldberg D E, Rudnick M. Genetic algorithms and the variance of fitness[J]. Compiles Systems, 1991, 5:265-278.

同被引文献103

引证文献14

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部