期刊文献+

基于经验模式分解的汉字字体识别方法 被引量:13

A Chinese Font Recognition Method Based on Empirical Mode Decomposition
在线阅读 下载PDF
导出
摘要 提出了一种基于经验模式分解(empiricalmodedecomposition,简称EMD)的汉字字体识别方法.通过对大量汉字字体的研究比较,选取了能反映汉字字体基本特征的8种基本笔画.以这8种汉字笔画为模板,在汉字文档图像块中随机地抽取笔画信息,形成笔画特征序列.通过对笔画特征序列作EMD分解,提取每个笔画特征序列的高频能量,并结合汉字文档图像块的平均灰度,形成字体识别的一个9维特征. This paper gives a novel approach to recognize Chinese fonts based on Empirical Mode Decomposition (EMD). By analyzing and comparing a great number of Chinese characters, 8 basic strokes are selected to characterize the structural attributes of Chinese fonts. Based on them, stroke feature sequences of each text block are calculated. Once decomposed by EMD, their first two intrinsic mode functions (IMFs), which are of the highest frequencies, are used to calculate the stroke energy of all the 8 basic strokes, forming the average of the energy of the two IMFs over the length of the sequence. To distinguish bold fonts from their regular fonts, average of the pixel's gray levels of the text is calculated and appended to the feature vector to form a 9 dimensional feature.Finally, the minimum distance classifier is used to recognize the fonts. Experiments show encouraging recognition rates.
出处 《软件学报》 EI CSCD 北大核心 2005年第8期1438-1444,共7页 Journal of Software
基金 Nos.60133020 60475042国家自然科学基金 No.2004CB318000国家重点基础研究发展规划(973) No.036608广东省自然科学基金 No.2003J1-C0201广州市科技计划项目~~
关键词 字体识别 经验模式分解(EMD) Hilben-Huang变换 font recognition empirical mode decomposition (EMD) Hilbert-Huang transform (HHT)
  • 相关文献

参考文献12

  • 1曾理,唐远炎,陈廷槐.基于多尺度小波纹理分析的文字种类自动识别[J].计算机学报,2000,23(7):699-704. 被引量:26
  • 2邓拥军,王伟,钱成春,王忠,戴德君.EMD方法及Hilbert变换中边界问题的处理[J].科学通报,2001,46(3):257-263. 被引量:330
  • 3Khoubyari S, Hull JJ. Font and function word identification in document recognition. Computer Vision and Image Understanding,1996,63(1):66-74.
  • 4Shi H, Pavlidis T. Font recognition and contextual processing for more accuratetext recognition. In: Proc. of the ICDAR'97. ULm:IEEE Computer Society Press, 1997.39-44.
  • 5Zramdini A, Ingold R. Optical font recognition using typographical features. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998,220(8):877-882.
  • 6Jung MC, Shin YC, Srihari SN. Multifont classification using typographical attributes. In: Proc. of the ICDAR'99. Bangalore: IEEE Computer Socety Press, 1999. 353-356.
  • 7Zhu Y, Tan TN, Wang YH. Font recognition based on global texture analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001,23 (10): 1192-1200.
  • 8陈力,丁晓青.基于小波特征的单字符汉字字体识别[J].电子学报,2004,32(2):177-180. 被引量:11
  • 9Huang NE, Shen Z, Long SR. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. of the Royal Society of London, 1998,A(454):903-995.
  • 10Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters, 2004,11(2): 112-114.

二级参考文献18

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3[1]H Shi,T Pavlidis.Font recognition and contextual processing for more accurate text recognition [A].ICDAR'97 [C].ULm,Germany:IEEE Computer Society Press,1997.39-44.
  • 4[2]A Zramdini,R Ingold.Optical font recognition using typographical features [J].IEEE Trans,1998,PAMI-20(8):877-882.
  • 5[3]Min-Chul Jung,Yong-Chul Shin,S N Srihari.Multifont classification using typographical attributes [A].ICDAR99 [C].Bangalore,India:IEEE Computer Socety Press,1999.353-356.
  • 6[4]Y Zhu,T Tan.Font recognition based on global texture analysis [J].IEEE Trans,2001,PAMI-23(10):1192-1200.
  • 7[5]S Mallat.A theory for multiresolution signal decomposition:The wavelet representation [J].IEEE Trans,1989,PAMI-11(7):674-693.
  • 8[6]K R Castleman.Digital Image Processing [M].Englewood Cliffs,N J,Prentice Hall,1996.
  • 9[7]R M Sakia.The Box-Cox transformation technique:a review [J].The Statistician-41:169-178.
  • 10[8]F Kimura,K Takashina,et al.Modified quadratic discriminant functions and the application to Chinese character recognition [J].IEEE Trans,1987,PAMI-9(1):149-153.

共引文献362

同被引文献115

引证文献13

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部