期刊文献+

立体阵的一般结构 被引量:6

THE GENERAL STRUCTURE OF CUBIC MATRICES
原文传递
导出
摘要 本文给出了立体阵的各种表示形式及立体阵乘法的各种定义,推导出其主要性质,说明立体阵的乘积在适当情况下可转化成普通矩阵乘积。然后讨论了立体阵的乘积与矩阵半张量积的关系,并用矩阵半张量积统一了各种立体阵的乘法运算。最后以对策论为例说明它的应用。 In this paper, all kinds of expressions and various definitions of products of cubic matrices are presented. Their properties are investigated. Consequently, we show that all products of cubic matrices can be converted into products of general matrices under certain appropriate conditions. Then the relationship between semi-tensor product of matrices and product of cubic matrices is studied. The semi-tensor product of matrices is used to unify the various products of cubic matrices. An example in game theory is implemented to illustrate the applications.
出处 《系统科学与数学》 CSCD 北大核心 2005年第4期439-450,共12页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(G59837270 60274025 60343001)博士后基金(2004036105)
关键词 立体阵 矩阵的半张量积 高维矩阵 纳什均衡 矩阵乘积 结构 乘法运算 表示形式 张量积 对策论 Cubic matrix, semi-tensor product of matrices, multi-demensional matrix,Nash equilibrium
  • 相关文献

参考文献1

二级参考文献17

  • 1[1]Huang L., Linear Algebra in Systems and Control Theory (in Chinese), Beijing: Science Press, 1984.
  • 2[2]Zhang, F., Matrix Theory, Basic Results and Techniques, New York: Springer-Verlag, 1999.
  • 3[3]Sokolnikoff, I. S., Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd ed., New York: John Wiley & Sons, Inc., 1964.
  • 4[4]Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., New York: Academic Press, 1986.
  • 5[5]Willems, J. L., Stability Theory of Dynamical Systems, New York: John Wiley & Sons, Inc., 1970.
  • 6[6]Ooba, T., Funahashi, Y., Two conditions concerning common quadratic Lyapunov functions for linear systems, IEEE Trans. Automat. Contr., 1997, 42(5): 719—721.
  • 7[7]Ooba, T., Funahashi, Y., Stability robustness for linear state space models——a Lyapunov mapping approach, Sys. Contr. Lett, 1997, 29. 191—196.
  • 8[8]Cheng, D., Xue, W., Huang, J., On general Hamiltonian Systems, Proc. of ICARCV'98, Singapore, 1998, 185—189.
  • 9[9]Morgan, B. S., The synthesis of linear multivariable systems by state feedback, JACC, 1964, 64: 468—472.
  • 10[10]Falb, P. L., Wolovich, W. A., Decoupling and synthesis of multivariable control systems, IEEE Trans, Aut. Contr., 1967, 12: 651—668.

共引文献53

同被引文献19

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部