期刊文献+

用改进的遗传算法和高斯牛顿法联合反演三维地下水流模型参数 被引量:11

Parameter Identification in a 3-D Groundwater Flow Numerical Model:an Improved Genetic Algorithm and the Gauss-Newton Method
在线阅读 下载PDF
导出
摘要 遗传算法在处理非线性优化问题时具有较好的全局搜索性能,但在局部搜索时搜索效率不高,解的精度亦不高,高斯牛顿法在处理非线性优化问题时的性质正好和遗传算法相反,利用遗传算法和高斯牛顿法的优点,用改进的遗传算法和高斯牛顿法联合反演地下水数值模型参数.首先用遗传算法求出地下水模型参数的初值,然后利用这组初值用高斯牛顿法进行数值模型参数的反演,并以一非均质各向同性三维承压非稳定流理想模型为例,结合有限元法讨论了用遗传算法和高斯牛顿法联合反演地下水数值模型参数的过程.计算结果表明,联合参数反演方法,具有收敛速度快、解的精度高的特点,在地下水渗流和水资源评价等领域可广泛应用. A genetic algorithm (GA) searches in the whole solving space as it deals with nonlinear optimization problems. But in the local solving space, GA is slow and the solution precision is low. The Gauss-Newton Method(GNM) has inverse characters on these points. In this paper, the GA and GNM are used in the parameter identification of ground water flow. GA solves the initial values of parameters. And then, the parameters are identified by GNM. We take 3-dimensional unsteady state flows in an inhomogeneous isotropic confined aquifer as an ideal model, and discuss application of GA and GNM to inverse problem of hydrogeology parameters with finite element method. It is shown that the improved algorithm converges faster and provides higher precision.
作者 姚磊华
出处 《计算物理》 EI CSCD 北大核心 2005年第4期311-318,共8页 Chinese Journal of Computational Physics
基金 国家自然科学基金(批准号:40372110)资助项目
关键词 遗传算法 高斯牛顿法 联合反演方法 地下水数值模型 参数 genetic algorithm Gauss-Newton method united inversing method groundwater flow numerical model parameters
  • 相关文献

参考文献8

  • 1Neuman S P. Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty [J]. Water Resources Research, 1973,9(4): 1006 - 1021.
  • 2Willis Robert, Yeh William W-G. Groundwater Systems Planning & Management [M]. New Jersey, Prentice-Hall, Inc. 1987.
  • 3Li Jingsbeng, Elsworth Derek. A modified Gauss-Newton method for aquifer parameter identification [J]. Ground Water, 1995,33(4) :662 - 668.
  • 4Harrowni K E I, Ouazar D, Cheng A H-D. Boundary and parameter identification using genetic algorithms and boundary element method [ A]. 1996, Proc of Computer Method and Water Resources 111 [ C ]. Beirut, Lebanon, Computational Mechanics publications.1996.487 - 496.
  • 5Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs [ M ]. Berlin, HeidelBerg: Springer-Verlag, 1996. (有中译本,北京:科学出版社,2000).
  • 6De Jong K A. An Analysis of the Behavior of a Class of Genetic Adaptive System [ D]. Univ of Mich, Press Ann Arbor, 1975.
  • 7Schraudolph N, Belew R. Dynamic parameter encoding for genetic algorithms, CSE Technical Report [ R]. University of San Diego,La Jolla, 1993.
  • 8Bard Y. Nonlinear Parameter Estimation [M] .New York:Academic, 1974.

同被引文献103

引证文献11

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部