期刊文献+

基于Bayes决策的蚁群优化算法 被引量:1

Ant colony optimal algorithms based on Bayes decision
在线阅读 下载PDF
导出
摘要 基于Bayes决策理论,提出了一种可以改进蚁群算法搜索性能的有效方法;针对基本蚁群算法中存在的“停滞”现象,对蚂蚁个体的寻优过程采取了隔代强化的措施,使算法具备较强的发现新解的能力,再采用后验分析对蚁群算法中的转移概率进行调整,使得改进后的蚁群算法在随机搜索过程中呈现出自组织特性,蚂蚁个体利用各自的后验知识不断地强化那些能“经受考验”的可行解,从而有效地压缩了搜索空间,提高了搜索效率.试验结果表明,该方法无需知道转移概率的先验分布,在解空间的全局寻优时具有良好的收敛性和鲁棒性. An effective method based on the principle of Bayes decision is put forth to improve the searching performance of basic ant colony algorithms. Aiming at the stagnation phenomenon, a way of interval strengthening is applied, thus the new method has a good ability of finding new solution.Meanwhile, posterior analysis is adopted to adjust the diversion probability and is applied by each agent to strengthen those durable solutions, which makes the stochastic searching process of the modified algorithms appear self-organizing characteristics and reduce the hunting sphere largely and improve the searching efficiency. The results of experiment show that the proposed method, even without any knowledge of diversion probability's prior distribution, has favorable convergence and robustness in finding the optimal solution.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第4期558-562,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(69875004) 江苏省自然科学基金资助项目(BK2001402).
关键词 蚁群算法 Bayes决策 极大熵 先验分布 后验分析 ant colony algorithms Bayes decision maximum entropy prior distribution posterior analysis
  • 相关文献

参考文献9

  • 1张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用,2000,17(1):1-3. 被引量:150
  • 2覃刚力,杨家本.自适应调整信息素的蚁群算法[J].信息与控制,2002,31(3):198-201. 被引量:109
  • 3Dorigo M, Gambardella L M. Ant colonies for the traveling salesman problem[J]. BioSystems, 1997, 43:73-81.
  • 4Vittorio M, Alberto C. The ant system applied to the quadratic assignment problem[J]. IEEE Transaction on Knowledge and Data Engineering, 1999, 11(5): 769-778.
  • 5McMullen P R. An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives[J]. Artificial Intelligence in Engineering, 2001, 15:309-317.
  • 6Gutjahr W J. ACO algorithms with guaranteed convergence to the optimal solution[J]. Information Processing Letters, 2002, 82:145-153.
  • 7Stützle T, Dorigo M. A short convergence proof for a class of ant colony optimization algorithms[J]. IEEE Trans on Evolutionary Computation, 2002, 6(4): 358-365.
  • 8Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, Man and Cybernetics, 1996, 26(1): 29-41.
  • 9潘春光,吴晓平.基于极大熵准则的先验分布确定方法[J].运筹与管理,2002,11(3):32-35. 被引量:2

二级参考文献9

共引文献254

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部