Generalized Vector Quasi-Variational-Like Inequalities without Monotonity and Compactness
没有单调性和紧性的广义向量拟似变分不等式(英文)
摘要
In this paper, some existence theorems of a solution for generalized vector quasivariational-like inequalities without any monotonity conditions in a noncompact topological space setting are proven by the maximal element theorem.
本文利用极大元定理在非紧拓扑空间设置下证明了没有单调性的广义向量拟似变分不等式解的存在性定理.
基金
the National Natural Science Foundation of China (10171118)the Education Committee project Research Foundation of Chongqing (030801)and the Science Committee project Research Foundation of Chongqing (8409)
参考文献20
-
1GIANNESSI F. Theorems of alternative, quadratic programs and complementarity problems [M]. Variational inequalities and complementarity problems (Proc. Internat. School, Erice, 1978), pp. 151-186, Wiley, Chich ester, 1980.
-
2CHEN G Y, CHENG G M. Vector variational inequalities and vector optimization [M]. In Lecture Notes in Economics and Mathematical Systems, 1987, 285: 408-456.
-
3LEE G M, KIM D S, LEE B S. Generalized vector variational inequality [J]. Appl. Math. Lett., 1996, 9(1):39-42.
-
4LIN K L, YANG Dong-ping, YAO J C. Generalized vector variational inequalities [J]. J. Optim. Theory Appl., 1997, 92(1): 117-125.
-
5KONNOV I V, YAO J C. On the generalized vector variational inequality problem [J]. J. Math. Anal. Appl., 1997, 206: 42-58.
-
6YANG X Q, YAO J C. Gap functions and existence of solutions to set-valued vector variational inequalies[J].J. Optim. Theory A ppl., 2002, 115(2): 407-417.
-
7OETTLI W, SCHLAGER D. Existence of equilibriafor monotone multivalued mappings [J]. Math. Methods Oper. Res., 1998, 48: 219-228.
-
8CHEN G Y, LIS J. Existence of solutions for a generalized vector variational inequality [J]. J. Optim. Theory Appl., 1996, 90: 321-334.
-
9LEE G M, LEE B S, CHANG S S. On vector quasivariational inequalities [J]. J. Math. Anal. Appl., 1996, 203: 626-639.
-
10DING Xie-ping, TARAFDAR E. Generalized Vector Variational-Like Inequalities without Monotonicity [M].Vector variational inequalities and vector equilibria, 113-124, Nonconvex Optim. Appl., 38, Kluwer Acad. Publ., Dordrecht, 2000.
-
1郭伟平.C—连续映射的若干性质[J].齐齐哈尔轻工业学院学报,1989,5(2):22-25. 被引量:1
-
2周友成.连续统与集函数T(Ⅱ)[J].数学年刊(A辑),1990,11(3):339-342.
-
3邢秀琴.关于紧子集的一个充要条件[J].张家口师专学报(自然科学版),1993(1):1-2.
-
4王忠华,刘岩瑜.一类φ-A扩张映射的公共不动点定理[J].齐齐哈尔大学学报(自然科学版),2001,17(4):80-81.
-
5刘春苔,蒋永红.紧致空间上的连续函数环[J].中南民族大学学报(自然科学版),2007,26(1):97-98.
-
6范志强,齐小刚,裴萍.弱广义向量拟似变分不等式解的存在性[J].数学的实践与认识,2011,41(2):179-184.
-
7龙伦海,何勇,梁莉.分形上的拓扑及其性质[J].海南大学学报(自然科学版),2014,32(2):102-105. 被引量:1
-
8李盛强.广义向量拟似变分不等式的通有稳定性和本质连通区[J].重庆理工大学学报(自然科学),2012,26(11):115-122. 被引量:1
-
9吴耀强.关于代数L-domain的一个刻画定理[J].江西师范大学学报(自然科学版),2006,30(6):573-576. 被引量:1
-
10吴玉虎,计东海.诱导超空间连续流的拓扑传递性[J].应用泛函分析学报,2013,15(3):243-249.