期刊文献+

Generalized Vector Quasi-Variational-Like Inequalities without Monotonity and Compactness

没有单调性和紧性的广义向量拟似变分不等式(英文)
在线阅读 下载PDF
导出
摘要 In this paper, some existence theorems of a solution for generalized vector quasivariational-like inequalities without any monotonity conditions in a noncompact topological space setting are proven by the maximal element theorem. 本文利用极大元定理在非紧拓扑空间设置下证明了没有单调性的广义向量拟似变分不等式解的存在性定理.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第3期414-422,共9页 数学研究与评论(英文版)
基金 the National Natural Science Foundation of China (10171118)the Education Committee project Research Foundation of Chongqing (030801)and the Science Committee project Research Foundation of Chongqing (8409)
关键词 set-valued mapping generalized vector quasi-variational-like inequalities noncompact topological space L-η-condition existence. 集值映射 广义向量拟似变分不等式 非紧拓扑空间 L-η-条件 存在性
  • 相关文献

参考文献20

  • 1GIANNESSI F. Theorems of alternative, quadratic programs and complementarity problems [M]. Variational inequalities and complementarity problems (Proc. Internat. School, Erice, 1978), pp. 151-186, Wiley, Chich ester, 1980.
  • 2CHEN G Y, CHENG G M. Vector variational inequalities and vector optimization [M]. In Lecture Notes in Economics and Mathematical Systems, 1987, 285: 408-456.
  • 3LEE G M, KIM D S, LEE B S. Generalized vector variational inequality [J]. Appl. Math. Lett., 1996, 9(1):39-42.
  • 4LIN K L, YANG Dong-ping, YAO J C. Generalized vector variational inequalities [J]. J. Optim. Theory Appl., 1997, 92(1): 117-125.
  • 5KONNOV I V, YAO J C. On the generalized vector variational inequality problem [J]. J. Math. Anal. Appl., 1997, 206: 42-58.
  • 6YANG X Q, YAO J C. Gap functions and existence of solutions to set-valued vector variational inequalies[J].J. Optim. Theory A ppl., 2002, 115(2): 407-417.
  • 7OETTLI W, SCHLAGER D. Existence of equilibriafor monotone multivalued mappings [J]. Math. Methods Oper. Res., 1998, 48: 219-228.
  • 8CHEN G Y, LIS J. Existence of solutions for a generalized vector variational inequality [J]. J. Optim. Theory Appl., 1996, 90: 321-334.
  • 9LEE G M, LEE B S, CHANG S S. On vector quasivariational inequalities [J]. J. Math. Anal. Appl., 1996, 203: 626-639.
  • 10DING Xie-ping, TARAFDAR E. Generalized Vector Variational-Like Inequalities without Monotonicity [M].Vector variational inequalities and vector equilibria, 113-124, Nonconvex Optim. Appl., 38, Kluwer Acad. Publ., Dordrecht, 2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部