期刊文献+

复合物Ca^+-RNA碱基的结构与稳定性 被引量:5

Structures and Stability of Complexes Ca^+ -RNA Nucleic Acid Bases
在线阅读 下载PDF
导出
摘要 用密度泛函理论(DFT)中的杂化密度泛函B3LYP方法,在6311+G(2df,2p)基组水平上,确定了RNA碱基与Ca+的气相金属离子亲和能和复合物的优化结构.通过考虑Ca+作用于RNA碱基互变异构体的不同位置,获得了所有稳定的复合物.对于胞核嘧啶,最稳定的复合物起源于最稳定的分子互变异构体;对于胸腺嘧啶,最稳定的分子互变异构体形成的复合物的键能最小,而最不稳定的互变异构体形成的复合物键能最强;尿嘧啶的情形与胸腺嘧啶相似.在互变异构体复合物中,键能是依赖于金属离子成键的位置,而总能量取决于全部的原子和它们之间的相对位置,这可能是造成几种互变异构体复合物键能和总能量变化趋势并不一致的原因. Gas-phase metal ion affinities and optimized structures of RNA nucleic acid bases for the Ca^+ were determined at a density functional level employing the hybrid B3LYP exchange correlation potential in connection with the 6-311 +G(2df,2p) basis set. All the molecular complexes, obtained by the interaction between several low-lying tautomers of RNA nucleic acid and Ca^+ on the different binding sites, were considered. For Cytosine, the most stable complex was obtained starting from the most stable tautomer of the free nucleic acid base tautomers. As to thymine, the bond energy of the ion with the most stable tautomer of the free nucleic acid base is the weakest among the three tautomer' s complexes, and that of the ion with least stable tautomer of the free nucleic acid base is the strongest . Uracil is similar to thymine. The two kinds of relation, bond energy and total energy for the complex, are in disagreement, as the metal affinities of RNA bases for the Ca^+ depend on binding sites, and total energy of complex (Ca^+ -RNA base) relies on all atoms and their relative positions in the complex.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2005年第4期537-540,共4页 化学物理学报(英文)
基金 ProjectsupportedbytheNationalNaturalScienceFoundationofChina(20171014 20471018)
关键词 DFT RNA 嘧啶 金属离子亲和能 稳定性 DFT, RNA, Pyrimidine, Stability, Metal ion affinity
  • 相关文献

参考文献4

二级参考文献38

  • 1黄荣彬,刘朝阳,张鹏,林逢辰,赵剑虹,郑兰荪,朱永宝.铝、磷、硫原子簇正负离子的激光产生与质谱研究[J].Chinese Journal of Structural Chemistry,1993,12(3):180-186. 被引量:15
  • 2黄旭日,冯健男,李泽生,孙家锺,张刚.P_(10)原子簇的电子结构[J].高等学校化学学报,1996,17(7):1116-1118. 被引量:4
  • 3[1]Rohlfing E A, Cox D M, Kaldor A. J. Chem. Phys. ,1984, 81:3322
  • 4[2]Hebard A F, Rosseisky M J, Haddon R C, Murphy D W,Glarum S H, Palstra T T M, Ramirez A P, Kortan A R.Nature, 1991, 350:600
  • 5[3]Reddy B V, Khanna S N, Castleman A W. J. Phys.Chem. , 1994, 98:9446
  • 6[4]Kroto H W, Health J. R, O' Brein S C, Curl R F, Smalley R E.Nature, 1985, 318:162
  • 7[6]YangShi, Nan Zhang, Zhen Gao, Fanao Kong, Qihe Zhu.J. Chem. Phys. , 1994, 101:9526
  • 8[7]Zhongde Yu, Nan Zhang, Xiaojun Wu, Zhen Gao, Qihe Zhu, Fanao Kong. J. Chem. Phys. , 1993, 99:1765
  • 9[8]Neusser H J, Boesl U, Weinkaut R, Schlag E W. Int. J.Mass Spectrum. Ion. Phys., 1984, 60:147
  • 10[9]Boesl U, Weinkau R F, Weickharde C, Schlag E W. International Journal of Mass Spectrometry and Ion Processes,1994, 131:87

共引文献14

同被引文献44

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部