期刊文献+

轴向受力梁强非线性超谐波与次谐波共振的能量迭代法 被引量:6

Energy-iterative method for solution of super-harmonic and sub-harmonic resonance of strongly non-linear vibrations with an axially forcing beam
在线阅读 下载PDF
导出
摘要 研究了在横向动载荷作用下存在轴向力的一类梁的强非线性振动;建立了梁振动的二阶强非线性非自治微分方程,并对求解强非线性自治系统的能量迭代法加以改进,用于求解梁的强非线性非自治系统,其方法是:由能量法得到主共振、超谐共振和次谐共振的一次近似解的表达式;引入牛顿迭代的思想和最小二乘法,得到高次近似解的表达式。研究结果表明:用改进后的能量迭代法求解强非线性非自治系统精度较高;分析这种非线性梁的振动时,除了要考虑其主共振外,还要考虑超谐共振和次谐共振。 Strongly non-linear vibrations of an axially forcing beam under transverse dynamic loads were investigated. The Dulling equation, the equation of strongly non-linear and non-autonomous oscillation system of the beam were set up. The energy-iteration method for strongly non-linear autonomous system was modified to deal with strongly non-linear non-autonomous system, and the modified new method was developed, the analytic expressions of solution of primary resonance and superharmonic and subharmonic resonance by the energy method were obtained, and the higher order analytic expression of solution was gotten by means of Newton iteration idea and least square technique principle. The results show that the modified energy iterative method for strongly non-linear and non-autonomous system is both effective and accurate, and that not only the primary resonance but also the superharmonic and subharmonic resonance must be considered in this sort of strongly non-linear beams.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第4期698-703,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(50475139) 湖南省教委科研基金资助项目(湘教财字[1998]1号)
关键词 强非线性非自治系统 超谐共振 次谐共振 能量迭代法 beam strongly non-linear and non-autonomous system superharmonic resonance subharmonic resonance energy iterative method
  • 相关文献

参考文献12

  • 1周一峰,谢柳辉,李骊.一类强非线性系统周期解的能量迭代法[J].应用力学学报,1997,14(4):26-30. 被引量:13
  • 2郭文华,曾庆元.上承式钢板梁桥空间振动计算分析[J].振动与冲击,2002,21(1):79-82. 被引量:4
  • 3OEz H R, Pakdemirli M, Boyaci H. Non-linear vibrations and stability of an axially moving beam with timedependent velocity [J]. Int J Non-linear Mechanics,2001, 36: 107-115.
  • 4Nayfeh A H, Mook D T. Nonlinear Oscillations[M].New York: John Wily & Sons Interscience, 1979.
  • 5Mook D T, Plant R H, Haquang N. The influence of an internal resonance on non-linear structural vibrations under subharmonic resonance conditions [J]. Journal of Sound and Vibration, 1985, 102:437-492.
  • 6Mook D T, Haquang N, Plant R H. The influence of an internal resonance on non-linear structural vibrations under combination resonance conditions [J]. Journal of Sound and Vibration, 1986, 104:229-241.
  • 7Azrar L, Benamar R, White R G. A semi-analytical approach to the non-linear dynamic response large vibration amplitudes (part I): general theory and application to the single mode approach to free and forced vibration analysis [J]. Journal of Sound and Vibration,1999, 124(2): 183-207.
  • 8OEz H R. Non-linear vibrations and stability analysis of tensioned pipes conveying fluid with variable velocity[J]. Int J Non-linear Mechanics, 2001, 36: 1031 -1039.
  • 9黄建亮,黄惠仪,陈恒,陈树辉.梁的强非线性超、次谐波共振[J].振动与冲击,2004,23(1):1-3. 被引量:8
  • 10周一峰.强非线性振动系统周期解的能量迭代法[J].力学季刊,2002,23(4):514-520. 被引量:10

二级参考文献7

共引文献24

同被引文献53

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部