摘要
每个代数结构一般都可引入相应的Fuzzy子结构,为了进一步研究Fuzzy子格以及Fuzzy同态的各种性质,本文引入了亚格的概念,并建立了Fuzzy子格与亚格的对应关系(定理1.7);给出了Fuzzy同态(同构)的分解定理(定理2.5和推论2.7);最后讨论了同余关系商格的Fuzzy子格问题,证明了在自然映射下,任一保序映射可以引导出商格中相应的Fuzzy子格,并由此引出了─Fuzzy商子格的概念。
Generally,every algebraic structure can built the relevant fuzzy substructure.In[1],the concept of fuzzy sublattice was introduced. In order to study fuzzy sublatticeand properties of fuzzy homomorphism, we introduce the concept of metalattice in thispaper, and establish the correspondence relation between fuzzy sublattice and metalat-tice; we give the decompostion theorem of fuzzy homomorphism(isomorphism ); thelast, we discuss problems of fuzzy sublattice of quotion lattice of the congruence rela-tion, and proof that every isotone morphism may built fuzzy sublattice of quotion latticein natural epimorphism hence introduce ─fuzzy quotion sublattice.
出处
《模糊系统与数学》
CSCD
1995年第1期57-63,共7页
Fuzzy Systems and Mathematics
基金
国家自然科学基金
关键词
亚格
模糊子格
模糊同态
模糊点
模糊同构
Fuzzy point
fuzzy sublattice
meta-lattice
fuzzy homomorphism
fuzzy isomorphism
─fuzzy quotion sublattice.