摘要
本文研究了截断和大数律的收敛速度,证明了截断和(固定)完全收敛性定理以及大数律收敛速度的几个等价条件,从而推广了独立和的结果.
Let {X_n, n≥1}be i.i.d. random variables and X_(n,1)≤X_(n,z)≤. . . ≤X_(n,n) be order statistics of X_1,X_2, . . .X_n. Let where k, r are fixed. In this paper we study convergence rates of the law of large numbers for S_n(k,r) and prove the comlete cenvergence theorems, which generalize the results of independent sums.
出处
《应用数学学报》
CSCD
北大核心
1995年第2期273-286,共14页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金
关键词
截断和
完全收敛
大数定理
收敛速度
Trimmed sums, law of large numbers, complete convergence, order statistics,slowly varying function.