期刊文献+

Nd-Fe-B基纳米复合永磁材料矫顽力及其机制的研究进展 被引量:3

Research Progress of Coercivity and Coercivity Mechanism of Nd-Fe-B Based Nanocomposite Permanent Magnets
原文传递
导出
摘要 重点探讨Nd-Fe-B基纳米复合永磁材料晶间交换耦合作用对有效各向异性和矫顽力的影响,对Nd-Fe-B基纳米复合永磁材料矫顽力机制进行讨论分析。硬磁相之间的耦合在反磁化场作用下将促进畴壁位移和磁距反转,不利于提高纳米复合永磁材料的矫顽力,在晶间形成适当的非磁性相减弱硬磁相之间的耦合作用可一定程度地提高纳米复合永磁材料矫顽力。除形核场、自钉扎作用外,晶粒内部缺陷的钉扎效应能阻止反磁化畴壁的位移,可进一步提高纳米复合永磁材料矫顽力。 The effects of the exchange-coupling between nano-grains on effective anisotropy and coercivity of Nd-Fe-B based nanocomposite permanent magnets were discussed, and the coercivity mechanism of the magnets was also analyzed. The exchange-coupling between hard grains promotes the movement of domain walls and the reversal of magnetic moment at the applied field, which decreases the coercivity of nanocomposite magnets. Therefore, nonmagnetic grain boundary phases with suitable thickness can weaken the exchange-coupling between nano-grains of hard magnetic phase to improve the coercivity of nanocomposite permanent magnets. Besides the nucleation field and self-pining, the pining effect of nonmagnetic precipitates distributed in grains may impede the movement of the domain walls to further increase the coercivity of nanocomposite magnets.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2010年第10期1868-1874,共7页 Rare Metal Materials and Engineering
基金 国家基础研究前期专项(2004CCA04000) 国家自然科学基金(50744014) 浙江省科技厅项目(2008C11086-1和2008C21046) 浙江省自然科学基金(Y406389) 宁波市科技局项目(2006B100054) 新型功能材料及其制备科学国家重点实验室培育基地开放基金 宁波大学王宽诚幸福基金
  • 相关文献

参考文献22

  • 1郭鹏举,刘新才,潘晶,李勇,崔平.热变形纳米复合磁体[J].稀有金属材料与工程,2008,37(3):377-381. 被引量:3
  • 2E. C. Kim,S. J. Kim,J. K. Baek,S. R. Lee.M?ssbauer study of intergranular phase in Nd 8 Fe86 ? x Nb x B6(x = 0, 1, 2, 3) nanocomposite magnet[J]. Hyperfine Interactions . 2008 (1-3)
  • 3The N D,,Hoa N Q,Oh S K et al. Journal of Physics . 2007
  • 4Kwon H W,,Zhang Y,Hadjipanayis G C. Journal of Magnetism and Magnetic Materials . 2006
  • 5Betancourt I,Cruz-Arcos G,Schrefl T et al. Acta Materialia . 2008
  • 6Spyra M,Leonowicz M. Journal of Magnetism and Magnetic Materials . 2008
  • 7Zhang S,,Xu H,Tan X et al. Journal of Alloys and Compounds . 2008
  • 8Fischer R,Kronmüller H. Journal of Magnetism and Magnetic Materials . 1999
  • 9Gao R W,Feng W C,Liu H Q et al. Journal of Applied Physics . 2003
  • 10Kelly P E,O‘Grady K,Mayo P I et al. IEEE Transactions on Magnetics . 1989

二级参考文献24

  • 1Chen C H, Lee D, Liu S. IEEE Trans Magn[J], 2004, 40(4): 2937.
  • 2Huang M Q, Turgut Z, Wheeler B. JApplPhys[J], 2005, 97: 10H104
  • 3Shen Y, He Y. JApplPhys[J], 2006, 99:08B520
  • 4Skomski R, Coey J. Phys Rev B[J], 1993, 48(21): 15 812
  • 5Jin Z Q, Okumura H, Wang H Let al. J Appl Phys[J], 2002, 91(10): 8165
  • 6Leonowicz M. JMater Process Tech[J], 2004, 153-154: 860
  • 7Zhang R, Liu Y, Ye J et al. JAlloy Compd[J], 2007, 427(1-2): 78
  • 8Zhang Y, Gabay A M, Hadjipanayis G C. IEEE Trans Magn[J],2005, 41(10): 3883
  • 9Wang H, Zhang Y, Jin Z Q et al. JApplPhys[J], 2003, 93(10): 7978
  • 10Gabay A M, Zhang Y, Hadjipanayis G C. J Magn Magn Mater[J], 2006, 302:244

共引文献2

同被引文献34

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部