期刊文献+

平面上有噪音散乱点集的参数化

Parameterization of planar unorganized points with noise
在线阅读 下载PDF
导出
摘要 散乱点集曲线重建关键步骤是参数化.提出了一种对平面上有噪音散乱点集参数化的新算法.算法中,首先求出点集的Delaunay三角化的最小生成树,继而对最小生成树的最长路径进行参数化.通过把其他点投影到最长路径上,对最长路径以外的点进行参数化.还给出了提高参数化的准确度的方法.以圆盘控制顶点B样条拟合为例展示了该算法的应用. Parameterization is a crucial step in curve reconstruction from unorganized points.An algorithm for parameterizing planar unorganized points with noises was described.In the algorithm,the minimum spanning tree of the Delaunay triangulation of the points was constructed first.Then,the longest path of the minimum spanning tree was parameterized.Finally,the other points which were not on the longest path were parameterized by projecting them onto the longest path.Some procedures were discussed to improve the accuracy of the algorithm.As an application,an example of disk B-spline fitting was provided.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2010年第12期1225-1229,1235,共6页 JUSTC
基金 国家自然科学基金(60873109 61073108) 新世纪优秀人才支持计划(NCET-08-0514)资助
关键词 参数化 噪音 散乱点 拟合 parameterization noise unorganized points fitting
  • 相关文献

参考文献9

  • 1刘海晨,邓建松.圆盘/球域控制点曲线/曲面在散乱数据拟合中的应用(英文)[J].中国科学技术大学学报,2008,38(2):113-120. 被引量:3
  • 2Foley T A,Nielson G M.Knot selection for parametric spline interpolation. Mathematical Methods in Computer Aided Geometric Design . 1989
  • 3Taubin G,Ronfard R.Implicit simplicial models for adaptive curve reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1996
  • 4Lee I K.Curve reconstruction from unorganized points. Computer Aided Geometric Design . 2000
  • 5Pottmann H,Randrup T.Rotational and helical surface approximation for reverse engineering. Computing . 1998
  • 6Fang L,Gossard D C.Multidimensional curve fitting to unorganized data points by nonlinear minimization. Computer Aided Design . 1995
  • 7Lee E T Y.Choosing nodes in parametric curve interpolation. Computer Aided Design . 1989
  • 8Farouki R T.Optimal parameterizations. Computer Aided Geometric Design . 1997
  • 9LIM C G.A universal parametrization in B-spline curve and surface interpolation. Computer Aided Geometric Design . 1999

二级参考文献12

  • 1吴卉,邓建松.球形控制点的Bézier曲面的降阶逼近[J].中国科学技术大学学报,2006,36(6):582-589. 被引量:3
  • 2Farin G. Curves and Surfaces in Computer Aided Geometric Design [M]. 3rd ed.. San Diego, CA: Academic Press, 1993.
  • 3Sederberg T W, Farouki R T. Approximation by interval Bezier curves [J]. IEEE Computer Graphics and Applications, 1992, 12 (5) : 87-95.
  • 4Patrikalakis N M. Robustness issues in geometric and solid modeling I-J]. Computer Aided Design, 2000, 32:629-689.
  • 5Lin Q, Rokne J G. Disk Bezier curves [J]. Computer Aided Geometric Design, 1998, 15(7):721-737.
  • 6Chen F L, Yang W. Degree reduction of disk Bezier curves [J]. Computer Aided Geometric Design, 2004, 21(3) :263-280.
  • 7Sendra R J, Winkler F. Tracing index of rational curve parametrizations [J]. Computer Aided Geometric Design, 2001, 18(8) :771-795.
  • 8Lim C G. Universal parametrization in constructing smoothly-connected B-spline surfaces [ J ]. Computer Aided Geometric Design, 2002, 19(6):465-478.
  • 9Foley T A. Local control of interval tension using weighted splines [J]. Computer Aided Geometric Design, 1986, 3(4):281-294.
  • 10Goshtasby A, ONeill W D. Surface fitting to scattered data by a sum of Gaussians [J]. Computer Aided Geometric Design, 1993, 10(2):143-156.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部