期刊文献+

连续蚁群优化算法的研究 被引量:9

Study of continuous ant colony optimization algorithm
在线阅读 下载PDF
导出
摘要 针对蚁群优化(ACO)只适用于离散问题的局限性,提出了连续蚁群优化算法(CACO),保留了连续问题可行解的原有形式,并融入演化算法(EA)的种群与操作功能.CACO将蚁群分工为全局和局部蚂蚁,分别引领个体执行全局探索式搜优与局部挖掘式搜优,并释放信息素,由个体承载,实现信息共享,形成相互激励的正反馈机制,加速搜优进程.实例测试表明,CACO适用于连续问题,全局寻优性能良好,尤其对复杂的高维问题,更能反映其相对优势.最后讨论了局部寻优方法、全局蚂蚁配比、挥发因子和种群规模等因素对CACO寻优性能的影响. Aiming at the shortcoming of ant colony optimization (ACO) which can only apply to discrete problems, a new ACO algorithm for continuous problems (CACO) was put forward. CACO combines ACO with evolutionary algorithms (EA). It merges both population and genetic operations concepts of EA. It preserves the original form of feasible solutions of the continuous problems. In the proposed algorithm, the ant colony is divided into global ants and local ants, which do the global exploratory optimization and local exploitation optimization respectively. Ants deposit pheromone on the individuals which they selected and share the information in the ant colony, which leads to the positive feedback mechanism and accelerates the optimization process. Experimental results show that CACO is fit for continuous optimization, and that it has advantage over standard genetic algorithm (SGA) in global optimization, especially when applied to high dimensional complex problems. The main influencing factors such as the optimization methods which local ants use, global ants ratio, evaporation factor and size of regions were also discussed.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第8期1147-1151,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(20276063).
关键词 蚁群优化 演化算法 信息素 探索性 挖掘性 全局寻优 ant colony optimization evolutionary algorithm pheromone exploration exploitation global optimization
  • 相关文献

参考文献10

  • 1DORIGO M, MANIEZZO V C. An ant system:Optimization by a colony of cooperating agents [J].IEEE Transaction on Systems, Man Cybernet B, 1996,26(1):29 -41.
  • 2STUTZLE T, HOOS H. MAX-MIN ant system and local search for the traveling salesman problem [A].Proceedings of the IEEE International Conference on Evolutionary Computation [ C ]. Indianapolis: IEEE,1997:309 -314.
  • 3DORIGO M, GAMBARDELLA I. M. Ant colonies for the traveling salesman problem [J]. Biosystems, 1997,43(2) :73 - 81.
  • 4王笑蓉,吴铁军.基于Petri网仿真的柔性生产调度——蚁群-遗传递阶进化优化方法[J].浙江大学学报(工学版),2004,38(3):286-291. 被引量:18
  • 5CORNE D, DORIGO M, GI.OVER F. New ideas in optimization [M]. London: McGraw-Hill, 1999 : 11 - 32.
  • 6DORIGO M, BONABEAU E, THERAULAZ G. Ant algorithms ant stigmergy [J]. Future Generation Computer Systems, 2000,16 ( 9 ) : 851 - 871.
  • 7WANG Lei, WU Qi-di. Linear system parameters identification based on ant system algorithm [A].Proceedings of the 2001 IEEE International Conference on Control Applications [C]. Mexico: IEEE,2001:401 -406.
  • 8WANG Lei, WU Qi-di. Ant system algorithm for optimization in continuous space [A]. Proceedings of the 2001 IEEE International Conference on Control Applications [C]. Mexico: IEEE, 2001 : 395 - 400.
  • 9JAYARAMAN V K, KULKARNI B D, SACHIN K,et al. Ant colony framework for optimal design and scheduling of batch plants [J]. Computer and Chemical Engineering, 2000,24(8) : 1901 - 1912.
  • 10希梅尔布劳DM.实用非线性规划[M].科学出版社,1981.435-481.

二级参考文献6

  • 1[1]CHEN Hao-xun, IHLOW J, LEHMANN C. A genetic algorithm for flexible job-shop scheduling [A]. Proceedings of the 1999 IEEE International Conference on Robotics & Automation [C]. Detroit: IEEE, 1999:1120-1125.
  • 2[2]CHEN Jyh-horng, FU Li-chen, LIN Ming-hung, et al.Petri-net and GA-based approach to modeling, scheduling, and performance evaluation for wafer fabrication [J]. IEEE Transaction on Robotics and Automation,2001, 17(5): 619-636.
  • 3[3]LEE D Y, DICESARE F. Scheduling flexible manufacturing systems using Petri nets and heuristic search [J]. IEEE Transaction on Robotics and Automation,1994, 10(2): 123-132.
  • 4[4]DORIGO M, GAMBARDELLA L M. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation, 1997, 1 (1): 53- 66.
  • 5[5]MANIEZZO V, COLORNI A. The ant system applied to the quadratic assignment problem [J]. IEEE Transaction on Knowledge Data Engineering, 1999, 11 (5):769-778.
  • 6[6]WANG Xiao-rong, WU Tie-jun. Ant colony optimization for intelligent scheduling [A]. Proceedings of the 4th World Congress on Intelligent Control and Automation [C]. Shanghai:[s.n.], 2002:66-70.

共引文献22

同被引文献95

引证文献9

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部