期刊文献+

一种改进的势函数聚类多阈值图像分割算法 被引量:7

Improved multi-threshold image segmentation algorithm based on potential function clustering
在线阅读 下载PDF
导出
摘要 针对基于势函数聚类的多阈值图像分割算法的不足,定义了伪势的概念,并在原算法基础上提出了一种改进的图像分割算法。由伪势概念确定了伪势合并的判别方法,按照此方法,当相邻的两个峰之间的距离小于所定义的自适应模糊伪势因子时,则应该进行伪势合并。改进后的算法在计算剩余势函数时判断是否存在伪势,然后在势划分函数组的确定过程中相应地进行伪势合并计算。利用多幅图像进行了多阈值分割的仿真试验,结果表明,改进的基于势函数的多阈值图像分割算法具有更好的鲁棒性和分割效果。 Aiming at the disadvantage of multi-threshold image segmentation algorithm based on potential function clustering, a concept of false potential is defined and an improved image segmentation algorithm is proposed on the basis of an original algorithm. According to this method, when the distance between the adjacent peaks is less than the adaptive fuzzy false potential factor, the false potential mergence should be implemented. The improved algorithm will judge if there are false potentials when calculating the residual potential function and if false potentials exist, implement false potential mergence in the process of dividing the potential function groups. The segmentation experiment for several images shows that the improved algorithm possesses better segmentation and more robust performance than the original algorithm.
出处 《光电工程》 EI CAS CSCD 北大核心 2005年第8期64-68,共5页 Opto-Electronic Engineering
基金 中国科学院科技创新基金资助项目(A010416)
关键词 图像分割 势函数 多阂值 鲁棒性 Image segmentation Potential function Multi-threshold Robustness
  • 相关文献

参考文献8

  • 1OLGA R P, LUCIANO S. New improvements to range image segmentation by edge detection [J]. IEEE Signal Processing Letters,2002,9(2):43-45.
  • 2章毓晋.图像分割[M].北京:科学出版社,2001..
  • 3ZHANG Y J. A review of recent evaluation methods for image segmentation[A]. Proceedings of the International Symposium on Signal Processing and its Applications[C]. Kuala Lumpur,Malaysia:IEEE,2001. 148-151.
  • 4罗希平,田捷,诸葛婴,王靖,戴汝为.图像分割方法综述[J].模式识别与人工智能,1999,12(3):300-312. 被引量:234
  • 5FERNANDES D N,STEDILE J P,NAVAUX P O A. Architecture of oscillatory neural network for image segmentation[A]. Proceedings of the 14th Symposium on Computer Architecture and High Performance Computing[C]. Porto Alegre,Brazil:IEEE,2002. 29-36.
  • 6MARKOU M,SINGH S,SHARMA M. Neural network analysis of MINERVA scene analysis benchmark[A]. Proceedings of 11th International Conference on Image Analysis and Processing[C]. Palermo,Italy:IEEE,2001. 267-272.
  • 7陈佳娟,赵学笃,赵炬.一种基于纹理信息和遗传神经网络的图像分割方法[J].计算机工程,2002,28(9):86-87. 被引量:2
  • 8裴继红,谢维信.势函数聚类自适应多阈值图像分割[J].计算机学报,1999,22(7):758-762. 被引量:29

二级参考文献20

  • 1Marr D.视觉计算理论[M].北京:科学出版社,1988.51-80.
  • 2裴继红,博士学位论文,1998年
  • 3裴继红,西安电子科技大学学报,1997年,24卷,4期,463页
  • 4Lie W N,IEEE Trans Image Processing,1995年,4卷,7期,1036页
  • 5Chiu S L,J Intell Fuzzy Systems,1994年,2卷,3期,267页
  • 6Zhu S C,International Conference on COmputer Vision,1998年,847页
  • 7Liang P,Proceeding of the International Conference on Computer Vision,1998年,193页
  • 8Wang J P,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,8期,619页
  • 9Wang Y P,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,10期,1040页
  • 10Wu M F,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,8期,858页

共引文献826

同被引文献56

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部