期刊文献+

基于Kalman滤波的自回归滑动平均信号信息融合Wiener滤波器 被引量:3

Kalman filtering-based information fusion Wiener filter of autoregressive moving average signals
在线阅读 下载PDF
导出
摘要 应用Kalman滤波方法,在按矩阵加权线性最小方差最优信息融合规则下,提出了带白色观测噪声的多通道ARMA信号的多传感器信息融合Wiener滤波器.它可统一处理信息融合滤波、平滑和预报问题.为了计算最优加权阵,提出了计算局部滤波误差互协方差阵的公式.同单传感器情形相比,可提高估计精度.一个带三传感器的目标跟踪系统的仿真例子说明了其有效性. By using the Kalman filtering method and the linear minimum variance optimal fusion rule weighted by matrices, a multisensor information fusion Wiener filter is presented for the multichannel autoregressive moving average(ARMA) signals with white observation noise. It can handle the information fusion filtering, smoothing and prediction problems in a unified framework. In order to compute the optimal weighting matrices, the formula of computing the cross - covariance matrices among local filtering errors, is presented. Compared with the single sensor case, the estimation accuracy is improved. A simulation example for a target tracking system with three-sensor shows its effectiveness.
作者 邓自立 高媛
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第4期641-644,共4页 Control Theory & Applications
基金 国家自然科学基金资助项目(60374026) 黑龙江大学自动控制重点实验室资助项目(04-01).
关键词 多通道ARMA信号 多传感器信息融合 按矩阵加权最优融合规则 WIENER滤波器 KALMAN滤波 方法 multichannel AMAR signal multisensor information fusion optimal fusion rule weighted by matrices Wiener filter Kalman filtering method
  • 相关文献

参考文献5

  • 1SUN Shuli, DENG Zili. Multi-sensor optimal information fusion Kalman filter [J]. Automatica ,2004,40(6): 1017 - 1023.
  • 2GAO J B, HARRIS C J. Some remarks on Kalman filters for the multisensor Fusion [ J]. Information Fusion ,2002,3(2) :191 - 201.
  • 3SUN Shuli. Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor [ J ]. Automatica, 2004,40(8): 1447 - 1453.
  • 4高媛,白敬刚,邓自立.多传感器单通道信息融合Wiener滤波器[J].科学技术与工程,2004,4(7):522-525. 被引量:11
  • 5邓自立,孙书利.基于Kalman滤波的Wiener状态估值器(英文)[J].自动化学报,2004,30(1):126-130. 被引量:5

二级参考文献3

共引文献14

同被引文献23

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部