期刊文献+

严格不变拟单调性 被引量:2

Strictly Invariant Quasimonotonicity
在线阅读 下载PDF
导出
摘要 本文对严格拟单调进行推广,定义了严格不变拟单调:设K为Rn中的不变凸集,η:Rn×Rn→Rn,如果f是不变拟单调的,且对x,y∈K,x≠y,存在z∈{y+λη(x,y):λ∈(0,1)},使得η(x,y)Tf(z)≠0,则称f为集合K上相对于η的严格不变拟单调映射。并建立了严格不变拟单调与严格预拟不变凸之间的关系:设K为Rn中的不变凸集,f是K上的可微函数,η:Rn×Rn→Rn,如果η满足文中所述条件1,则f是集合K上相对于η的严格预拟不变凸函数的充分必要条件是f是集合K上相对于η的严格不变拟单调,且对所有x,y∈K,有f(y)≤f(x)f(y+η(x,y))≤f(x)成立。 In this paper, the strictly invariant quasimonotone is defined as an extension of strictly quasimonotone : Let K of R^n be an invex set with respect to η:R^n×R^n→R^n. A mapfis strictly invariant quasimonotone with respect to the same η on K, iffis invariant quasimonotone, and for any distinct x,y ∈ K, there exists z∈{y+λη(x,y):λ∈(0,1)}, such as η(x,y)^T F(z)≠0. Relationship between strictly invariant quasimonotonicity and strictly prequasiinvexity are established : Let K of R^n be an invex set with respect to η, and let f be a differentiable function on K. If η satisfies condition 1, then f is strictly prequasiinvex with respect to the same η on K, if and only if △↓f is strictly invariant quasimonotone with respect to the same η on K, and for all x,y ∈ K,f(y) ≤f(x) implies f(y + η(x,y) ) ≤f(x).
作者 刘芙萍
出处 《重庆师范大学学报(自然科学版)》 CAS 2005年第3期60-62,共3页 Journal of Chongqing Normal University:Natural Science
关键词 严格不变拟单调 严格预拟不变凸 等价关系 strictly invariant quasimonotone strictly prequasiinvex equivalent relation
  • 相关文献

参考文献12

  • 1HANSON M A. On Sufficiency of the Kuhn Tucker Conditions[J]. Journal of Mathematical Analysis and Applications, 1981,80: 545-550.
  • 2WEIR T, MOND B. Preinvex Functions in Multiple-Objective Optimization[J]. Journal of Mathematical Analysis and Applications, 1988,136: 29-38.
  • 3WEIR T, JEYAKUMAR V. A Class of Nonconvex Functions and Mathematical Programming[J]. Bulletin of the Australian Mathematical Society, 1988,38: 177-189.
  • 4杨新民.凸函数的一个新特征性质[J].重庆师范学院学报(自然科学版),2000,17(1):9-11. 被引量:4
  • 5杨新民.凸函数的两个充分性条件[J].重庆师范学院学报(自然科学版),1994,11(4):9-12. 被引量:8
  • 6KARAMARDIAN S, SCHAIBLE S. Seven Kinds of Monotone Maps[J].Journal of Optimization Theory and Applications,1990,66: 37-46.
  • 7RUIZ-GARZON G, OSUNA-GOMEZ R, UFIAN-LIZANA A. Generalized Invex Monotonicity[J]. European Journal of Operational Research, 2003,144: 501-502.
  • 8YANG X M, YANG X Q, TEO K L. Generalized Invexity and Generalized Invariant Monotonicity[J]. Journal of Optimization Theory and Applications, 2003,117(3): 607-625.
  • 9MOHAN S R, NEOGY S K. On Invex Sets and Preinvex Functions[J]. Journal of Mathematical Analysis and Applications, 1995, 189: 901-908.Optimization,1991, 22: 513-525.
  • 10PINI R. Invexity and Generalized Convexity[J]. Optimization,1991, 22: 513-525.

共引文献9

同被引文献15

  • 1Yang X M, Yang X Q, Teo K L. Generalized Invexity and Generalized Invariant Monotonicity [ J ]. Journal of Optimization Theory and Applications, 2003,117 (3) : 607 -625.
  • 2Jabarootian T, Zafarani J. Generalized Invariant Monotonicity and Invexity of Non - differentiable Functions [ J ]. Journal of Global Optimization ,2006.
  • 3Clark F H, Stern R J, Ledyaev Y S, Wolenski P R. Nonsmooth Analysis and Control Theory[ M ]. Springer, New York, 1998.
  • 4Mohan S R, Neogy S K. On Invex Set and Prinvex Functions[ J]. Journal of Mathematical Analysis and Aplications, 1995,189: 901 - 908.
  • 5Pini R. Invexity and Generalized Convexity[ J]. Optimition, 1991,22:513 -525.
  • 6Yang X M, Yang X Q, Teo K L. Characterizations and Applications of Prequasi - Invex Functions [ J ]. Journal of Optimization Theory and Applications,2001,110 (3) :645 - 668.
  • 7JABAROOTIAN T,ZAFARANI J.Generalized invariant monotonicity and invexity of non-differentiable functions[J].Journal ofGlobal Optimization,2006,36(4):537-564.
  • 8CLARK F H,STERN R J,LEDYAEV Y S,et al.Nonsmooth analysis and control theory[M].New York:Springer,1998.
  • 9MOHAN S R,NEOGY S K.On invex set and prinvex functions[J].Journal of Mathematical Analysis and Aplications,1995,189:901-908.
  • 10PINI R.Invexity and generalized convexity[J].Optimition,1991,22(4):513-525.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部