期刊文献+

MLSVM4——一种多乘子协同优化的SVM快速学习算法 被引量:3

MLSVM4—An SVM Fast Training Algorithm Based on Multi-Lagrange Multiplier
在线阅读 下载PDF
导出
摘要 贯序最小优化(SMO)算法是解决大数据集支持向量机学习问题的一种有效方法,但SMO选择工作集的策略是选择数据集中最违背KKT条件的两个样本,而且还使用了随机函数,使得优化过程具有很大的随机性,影响了学习效率.在多拉格朗日乘子协同优化的通用公式基础上,吸收了Keerthi所提出的SMO修改算法中双阈值的优点,给出了乘子数为4时的一个算法MLSVM4,由于能更加精确地确定待优化样本的拉格朗日乘子值,使得学习收敛速度大大提高,特别是在使用线性核的场合下效果更加明显,在Adult、Web、手写体数字数据集上的实验结果表明,MLSVM4算法速度超过了SMO算法3到42倍. Sequential minimal optimization (SMO), as a popular effective approach to train the support vector machine for large data set has some drawbacks. Since during every iteration it selects the two samples violating KKT conditions most with the help of random function to train support vector machine, the randomness makes it unable to converge steadily. Based on the new analytical method proposed before, the which incorporates multiple Lagrange multipliers to optimize support vector machine, a new algorithm MLSVM4 with multiplier 4 is proposed without the help of random function. Because it can more accurately select the samples used during the iteration, it can converge much faster than the other methods proposed before, especially in the case of support vector machine with linear kernel. Experiment on a large range of standard data sets, such as Adult, Web and handwriting digital data, shows that MLSVM4 performs better with the factor of 3 to 42 times than SMO methods.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第9期1467-1471,共5页 Journal of Computer Research and Development
基金 国家自然科学基金项目(30271048) 南京林业大学引进(留学)人才基金项目(G200228) 南京林业大学科研基金重点课题基金项目(X020701(Z))~~
关键词 SVM 快速学习算法 拉格朗日乘子 SVM fast training algorithm Lagrange multipliers
  • 相关文献

参考文献8

  • 1V.N. VapniK. The Nature of Statistical Learning Theory.Berlin: Springer, 1998.
  • 2E. Osuna, R. Freund, F. Girosi. An improved training algorithm for support vector machines. The IEEE NNSP' 97. Amelia Island, FL, 1997. 276~285.
  • 3J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. Microsoft Research, Tech.Rep.: MSR-TR-98-14, 1998.
  • 4Keerthi. Improvements to Platt' s SMO algorithm for SVM classifier design. Machine Learning, 2002, 46(1/3): 351~360.
  • 5李建民,张钹,林福宗.序贯最小优化的改进算法[J].软件学报,2003,14(5):918-924. 被引量:30
  • 6孙剑,郑南宁,张志华.一种训练支撑向量机的改进贯序最小优化算法[J].软件学报,2002,13(10):2007-2013. 被引量:25
  • 7J.C. Platt. Adult and Web datasets. http:∥research. microsoft.com/~ jplatt/, 2005-4-24.
  • 8Y. LeCun, L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998,86(11): 2278~2324.

二级参考文献19

  • 1Burges C.Atutorial on suovort vector machines for pattern recognition.Data Mining and Knowledge Discovery,1998,2(2):1-43.
  • 2Collobert R,Bengio S.SVMTorch:A support vector machine for large-scale regression and classification problems.Journal of Machine Learning Research,2001,1:143-160.
  • 3Platt J.Fast training of support vector machines using sequential minimal optimization.In:Schoelkopf B,Burges C,Smola A,eds.Advances in Kernel Methods-Suppog Vector Learning.Cambridge,MA:MIT Press,1999.185~208.
  • 4Joaehims T.Making large-scale support vector machine learning practical.In:Schoelkopf B,Burges C,Smola A,eds.Advances in Kernel Methods- Support Vector Learning.Cambridge,MA:MIT Press,1999.169~184.
  • 5Platt J.Using analytic QP and sparseness to speed training of support vector machines.In:Kearns M,Solla S,Cohn D,eds. Advances in Neural Information Processing Systems 11.Cambridge,MA:MIT Press,1999.557~563.
  • 6Flake G,Lawrence S.Efficient SVM regression training with SMO.Machine Learning,2002,46(1/3):271~290.
  • 7Keerthi S,Shevade S,Bhattcharyya C,Murthy K.Improvements to Platt’s SMO algorithm for SVM classifier design.Neural Computation,2001,13(3):637-649.
  • 8Keerthi S,Gilbert E.Convergence of a generalized SMO algorithm for SVM classifier design.Machine Learning,2002,46(1/3):351-360.
  • 9Lin CJ.On the convergence of the decomposition method for support vector machines.IEEE Transactions on Neural Networks,2001,12(6):1288-1298.
  • 10Bian, Zhao-qi, Zhang, Xue-gong. Pattern Recognition. 2nd ed., Beijing: Tsi nghua University Press, 1999 (in Chinese).边兆祺,张学工.模式识别.第2版,北京:清华大学出版社,1999.

共引文献39

同被引文献40

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部