期刊文献+

数据挖掘算法研究与综述 被引量:52

Research and summary of data mining algorithms
在线阅读 下载PDF
导出
摘要 数据挖掘方法结合了机器学习、模式识别、统计学、数据库和人工智能等众多领域的知识,是解决从大量信息中获取有用知识、提供决策支持的有效途径,具有广泛的应用前景。以关联、分类、聚类归类,对当前数据挖掘的多种方法进行了研究,并指出其现存的问题。这些方法都有局限性,多方法融合、有机组合互补将成为数据挖掘的发展趋势。 Data Mining integrates with knowledge ofnumerous fields such as machine leaming, pattemrecognition, statistics, database and artificial intelligence. It is an effective approach to fetch useful information from large database and offer decision support. There is a broad application foreground of data mining. Many latest methods range by association, classification and clustering in data mining was researched, and their remaining problems were discussed. As a whole, all these algorithms have their own limitations, and organically combining several methods will be the develooment trend for data mining.
出处 《计算机工程与设计》 CSCD 北大核心 2005年第9期2304-2307,共4页 Computer Engineering and Design
基金 国家863高技术研究发展基金项目(2002AA412020)
关键词 数据挖掘 分类算法 关联分析 分类分析 聚类分析 data mining classification algorithm association analysis classification analysis clustering analysis
  • 相关文献

参考文献20

  • 1Gehrke J, Ramakrishnan R, Ganti V. Rainforest a framework for fast decision tree construction of large datasets[A]. In VLDB[C].1998.
  • 2Friedman N, Geiger D, Goldszmidt M. Bayesian network classifier [J]. Machine L earning, 1997, 29(1): 131-163.
  • 3Liu B, Hsu W, Ma Y. Integrating classification and association rule mining[A]. Proc of the 4th int confon knowle-dge discovery and dataMining[C]. NY, USA:AAAIPress, 1998.80-86.
  • 4WANG M, Iyer B, Vitter J S. Scalable mining for classification rules in relational databases[A]. Eaglestone B, DesaiBC, SHAO Jianhua. Proc of the 1998 Int database eng and appl symp[C].Cardiff, Wales, UK:IEEEComputer Society, 1998.58-67.
  • 5王利强,唐常杰,于中华,何雪梅.基于Web的数据采掘[J].计算机应用,1998,18(10):9-12. 被引量:22
  • 6李永敏,朱善君,陈湘晖,张岱崎,韩曾晋.基于粗糙集理论的数据挖掘模型[J].清华大学学报(自然科学版),1999,39(1):110-113. 被引量:109
  • 7MacQueen J. Some methods for classification and analysis of multivariate observations[A].Proc 5th berkeley symp.math statist[C]. Prob, 1967-01.
  • 8Kaufman L, Rousseeuw P J. Finding groups in data: an introduction to cluster analysis[M]. John Wiley and Sons, 1990.
  • 9Wei Wang, Jiong Yang, Richard Muntz. STING: A statistical information grid approach to spatial data mining[A]. Twenty-third international conference on very large data bases[C], 1997.
  • 10Sheikholeslami G, Chatterjee S, Zhang A. Wave cluster: a multiresolution clustering approach for very large spatial databases [A]. Proc. Int. Conf. on very large data bases[C]. New York, NY,1998.428-439.

二级参考文献1

  • 1王利强,数据库研究进展97.第十四届全国数据库学术会议论文集,1997年

共引文献129

同被引文献459

引证文献52

二级引证文献364

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部