期刊文献+

基于小波分析和非线性PCA的图像压缩算法 被引量:1

Image compression algorithm based on wavelet analysis and nonlinear PCA
在线阅读 下载PDF
导出
摘要 提出一个基于小波分析和非线性PCA(nonlinear principal component analysis,NLPCA)的图像压缩算法,该算法通过对小波分解系数的能量大小对各个小波子图进行分类,然后用具有高强压缩能力的NLPCA对各类子图进行不同程度的压缩。其主要特点是在高压缩比条件下能达到很高的图像重构信噪比。实验结果表明该算法性能良好,在压缩比为93.1时其图像重构信噪比都能达到30以上。 An image compression algorithm based on wavelet analysis and nonlinear principal component analysis (NLPCA) is put forward. The wavelet sub-image via the energy magnitude of coefficient decomposed by wavelet analysis is classified, and then each sub-image is compressed to different extents with NLPCA. High picture reconstruction signal noise ratio (PSNR) is achieved at a high compression rate. The experiment validates the algorithm's good performance. The PSNR is greater than 30 at the compression rate of 93.1.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第9期1532-1535,共4页 Systems Engineering and Electronics
关键词 小波分析 非线性主成分分析 重构 图像压缩 wavelet analysis nonlinear principal component analysis reconstruct image compression
  • 相关文献

参考文献5

二级参考文献6

  • 1J Edward Jackson. Principal Components and Factor Analysis: Part I--Principal Components[J]. Journal of Quality Technology, 1980,12(4).
  • 2Mark A Kramer. Nonlinear Principal Component Analysis Using Autoassocimive Neural Network[J] .AICHE Journal, 1991,37(2).
  • 3D Dong, T J Mcavoy. Nonlinear Principal Component Analysis--Based on Principal Curves and Neural Networks [ J ].Computers and Chem. Eng., 1996,20(1):65-78.
  • 4Jia- Hui Jiang, Ji- Hong Wang.Neural network learning to non- lin-ear principal component analysis [ J]. Analytica Chimica Acta 336,1996:209-222.
  • 5S Tan, M Mavrovouniotis. Reducing data dimensionality through optimizing Neural Network inputs[J] .AIChE Journal, 1995,41(6).
  • 6张文忠,沈兰荪.一种新的3-D小波变换图像编码方法[J].电子学报,1997,25(10):32-36. 被引量:9

共引文献8

同被引文献21

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部