期刊文献+

改进粒子群优化算法在工程优化问题中的应用研究 被引量:25

Research on the Application of IPSO in Engineering Optimization Problem
在线阅读 下载PDF
导出
摘要 粒子群优化(PSO)算法是一种群集智能方法,它通过粒子之间的合作与竞争以实现对多维复杂空间的高效搜索。在对于粒子群群体构造和粒子多样性对收敛速度和精度影响的研究基础上提出了一种改进型粒子群优化算法。针对工程中的有约束的优化问题,将改进粒子群算法与函数法相结合进行求解。计算实例表明改进型粒子群优化算法大大改善了传统PSO算法的全局收敛性能,解的精度提高了很多。 Particle swarm optimization (PSO) is a kind of swarm intelligence method. The particle swarm optimization is an algorithm for searching the multidimensional complex space efficiently through cooperation and competition among the individuals in a population of particles. Based on the research on the affection of population construction and the difference of particles to convergence speed and precision,an improved PSO (IPSO) algorithm is proposed. For the constrained optimization problems in Engineering,IPSO is combined with punish function to get the optimum. The results show that IPSO can improve the global convergence performance of traditional PSO greatly,heighten the accuracy of the solution.
作者 冯奇峰 李言
机构地区 西安理工大学
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第9期984-987,990,共5页 Chinese Journal of Scientific Instrument
关键词 粒子群优化算法 工程优化 种群构造 粒子多样性 Particle swarm optimization Engineer optimization Population construction Difference of particles
  • 相关文献

参考文献8

  • 1Kennedy J,Eberhart R C. Particle swarm optimization[A]. Proc. IEEE Int. Conf. Neural Networks [C],Piscataway, NJ : IEEE Press, 1995,1942 - 1948.
  • 2Dorigo M,Gambardella L M. Ant colonies for the traveling salesman problem[J].
  • 3Frans van den Bergh. An analysis of particle swarm opertimizer [D]. Pretoria.. Natural and Agricultrual Science University of Pretoria ,November 2001.
  • 4李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:311
  • 5Liping Zhang,et al. A new approach to improve particle swarm optimization [J].Springer-Verlag Heidelberg,ISSN : 0302-9743,2003,2723 : 134 - 139.
  • 6Tim Hendtlass. Preserving diversity in particle swarm optimization [J].Springer-Verlag Heidelberg, ISSN:0302-9743. 2003,2718:31 - 40.
  • 7张铃,ahu.edu.cn,张钹.遗传算法机理的研究[J].软件学报,2000,11(7):945-952. 被引量:127
  • 8李炳宇,萧蕴诗,汪镭.PSO算法在工程优化问题中的应用[J].计算机工程与应用,2004,40(18):74-76. 被引量:53

二级参考文献20

  • 1Yi Shang.Global Search Methods for Solving Nonlinear Optimization Problems[DJ.Doctor Dissertation.University of Illinois at UrbanaChampaign,1997
  • 2J Kennedy.The particle swarm:social adaptation of knowledge[C].In:Proc IEEE Int Conf on Evolutionary Computation,1997:303~308
  • 3Carlos A,Coello Ceello.A Survey of Constrained Handling Techniques used with Evolutionary Algorithms
  • 4Mitsuo Gen,Runwei Cheng.Genetie algorithms and engineering design [M].New York:John Wiley & Sona,1997
  • 5A Homaifar,S H Y Lai,X Qi.Constrained optimization via genetic algorithms[J].Simulation,1994; 62 (4):242~254
  • 6David M Himmelblau.Applied nonlinear programming[M].New York:McGraw-Hill,1972
  • 7J Kennedy,R Eberhart.Particle Swarm Optimization[C].In:Proc IEEE Int Conf on Neural Networks,1995:1942~1948
  • 8R Eberhart,J Kennedy.A New Optimizer Using Particle Swarm Theory[C].In:Proc 6th Iht Symposium on Micro Machine and Human Science,1995:39~43
  • 9Russell C Eberhart,James Kennedy.Swarm Intelligence.Morgan Kaufmann.San Diego.ISBN 1-55860-595-9,2001
  • 10Y Fukuyama et al.A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment[J].IEEE Transaction on Power Systems,2000; 15(4)

共引文献486

同被引文献234

引证文献25

二级引证文献294

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部