期刊文献+

基于蚂蚁算法的RBF网络参数的两阶段优化 被引量:7

Two Phase Optimization of RBF Neural Network Parameter Based on Ant Colony Algorithm
在线阅读 下载PDF
导出
摘要 提出了一种径向基函数(RBF)网络中心参数仿生优化算法,该算法基于改进的蚂蚁算法分两阶段完成。第一阶段为:首先进行网络参数范围估算,然后根据一定的步长对网络参数区间取离散点,最后蚂蚁根据在各个离散点的信息素的多少来选择路径,从而进行网络参数优化。第二阶段为:利用第一阶段的结果进行局部区间扩张,从而进行进一步优化。用蚂蚁算法优化后的网络对典型的混沌时间序列进行预测,结果表明其预测的各项误差低于常规的优化方法。 In the paper ant colony algorithm is improved and the parameters of radial basis function network are optimized in two phase,The first phase can be described as:First,the extent of every parameter is estimated;second, discrete points are got from every extent according to definite step;at last,ant colony selects the points according to the information quantity,so the network parameters are optimized;The second phase can be described as:The result of the first phase is locally expanded,so new extent is formed and can be optimized more precisely.Tbe typical chaos sequence is predicted through the optimized network and the prediction result shows that the arrived error is far smaller than the corresponding part of the traditional algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第27期56-59,共4页 Computer Engineering and Applications
基金 江苏省教育厅自然科学基金(编号:01KJB520007)
关键词 径向基函数(RBF) 神经网络 蚂蚁算法 参数优化 Radial Basis Function(RBF) ,neural network,ant colony algorithm,parameter optimization
  • 相关文献

参考文献14

  • 1Moody J,Darken C.Fast Learning in Networks of Locally-tuned Processing Units[J].Neural Computation, 1989; (1) :281~294
  • 2Chiu S L.Fuzzy Model Identification Based on Cluster Estimation[J].Journal of Intelligent and Fuzzy System,1994;2(3)
  • 3Chen S,Cowan C F N,Grant P M.Orthogonal least squares learning algorithm for radial basis function networks[J].IEEE Transactions on neural networks, 1991; (3) :308
  • 4Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C].In: Proc of 1^st European Conf, Artificial Life, Paris, France:Elsevier, 1991:134~142
  • 5Colorni A,Dorigo M,Maniezzo V.An investigation of some properties of an ant algorithm[C].In:Proc of Parallel Problem Solving from Nature (PPSN), France: Elsevier, 1992: 509~520
  • 6Colorni A,Dorigo M,Maniezzo V et al. Ant system for job shop scheduling[J].Belgian J of Operations Research Statistics and computer science, 1994;34(1 ) :39~53
  • 7Luca M,Cambardella, Dorigo M.Ant Q:a reinforcement learning approach to the traveling salesman problem[C].In:Proc of 12^th Machine Learning Conf, France: Morgan Kaufmann, 1995: 252~260
  • 8Thomas stutzle,Holger Hoos. Max-min ant system and local search for combinatorial optimization problems[C].In:Proc of 2^nd Int Conf on Metaheurstics, Wien: Springer Verlag, 1997
  • 9Dorigo M ,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents[J].IEEE Trans on Systems,Man and Cybernatics,1996:26(1 ) :28~41
  • 10叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例[J].武汉大学学报(信息科学版),2004,29(7):597-601. 被引量:156

二级参考文献21

  • 1DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agent [ J ]. IEEE Trans on Systems,Man,and Cybernetics, 1996, 26( 1 ):29 - 41.
  • 2COLORNI A. Heuristics from nature for hard combinatorial optimization problems [ J ]. Int Trans in Opnl Res,1996, 3(1) :1 -21.
  • 3DORIGO M, GAMBARDELLA L M. A cooperative learning approach to the traveling salesman problem [ J ].IEEE Trans on Evolutionary Computation, 1997, 1 ( 1 ) :53 -66.
  • 4Colorini A , Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies.1st European Conf. Artificial Life, Pans., Elsevier, France, 1991
  • 5Colorini A, Dorigo M, Maniezzo V. 1991 Positive Feedback as a Search Strategy. Technical Report 91-016, Politecnico di Milano,1991
  • 6M Dorigo,V Maniezzo and A Colorni.The ant system:Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics Part B,26(1):29-41,1996.
  • 7L M Gambardella,E D Taillard,and M Dorigo.Ant colonies for the QAP[J].Journal of the Operational Research Society.(JORS) ,1999,50(2):167-1176.
  • 8A Colorni,M Dorigo,V Maniezzo,and M Trubian.Ant system for job-shop scheduling[J].Belgian Journal of Operations Research,Statistics and Computer Science (JORBEL) ,1994,34:39-53.
  • 9B Bullnheimer,R F Hartl,and C Strauss.Applying the ant system to the vehicle routing problem[M].IN I H Osman S Vo ,S Martello and C Roucairol,editors,Meta-Heuristics:Advances and Trends in Local Search Paradigms for Optimization,Kluwer Academics,1998.109-120.
  • 10D Costa and A Hertz.Ants can color graphs[J].Journal of the Operational Research Society,1997,48:295-305.

共引文献333

同被引文献45

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部