期刊文献+

基于识别的凸集投影人脸图像超分辨率重建 被引量:8

Face Image Super-Resolution Reconstruction Based on Recognition and Projection onto Convex Sets
在线阅读 下载PDF
导出
摘要 人脸图像的超分辨率重建在公安、视频监控等领域有重要应用价值·基于识别的思想,对人脸灰度图像进行统计分析,得到有关人脸灰度整体特征的先验知识,将其描述为属性集合,从而利用凸集投影算法进行超分辨率图像重建·实验结果表明,重建质量较为理想,与通常的超分辨率凸集投影重建方法相比,抑制噪声的能力有显著提高,重建质量改善明显,收敛速度加快,且易于计算和实现· Face image super-resolution reconstruction (SRR) can be widely used in forensic analysis and video surveillance. With the recognition-based idea, the statistical characteristics of face images are investigated and incorporated into SRR. Based on the set theoretic formulation, a projection onto convex sets (POCS) algorithm is applied to find the solution to face image reconstruction. Compared with the traditional POCS based SRR methods, the proposed approach imposes some extra constraint sets to the solution. The experiment results on frontal face images show that the proposed approach gains a better performance both on noise suppression and reconstruction quality and has the advantage of simplicity in computation.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第10期1718-1725,共8页 Journal of Computer Research and Development
基金 陕西省自然科学基金项目(2003F29)
关键词 图像重建 人脸图像 超分辨率 凸集投影 image reconstruction face image super-resolution projection onto convex sets
  • 相关文献

参考文献17

  • 1A.J. Patti, M. I. Sezan, A. M. Tekalp. Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Processing, 1997, 6(8): 1064~1076.
  • 2C.P. Sung, K. P. Min, G. K. Moon. Super-resolution: A technical overview. IEEE Signal Processing Magazing, 2003, 20(5): 21~36.
  • 3S. Baker, T. Kanade. Limits on super-resolution and how to break them. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 29(9): 1167~ 1183.
  • 4S. Baker, T. Kanade. Hallucinating faces. The 4th International Conf. Automatic Face and Gesture Recognition, Grenoble,France, 2000.
  • 5R. Xiao, M. J. Li, H. J. Zhang. Robust multipose face detection in images. IEEE Trans. Circuits and Systems for Video Teehnology, 2004, 14(1): 31~41.
  • 6C. Liu, H. Y. Shum, C. S. Zhang. A two-step approach to hallucinating faces: Global parametric model and local nonparametric model. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2001. 192~ 198.
  • 7Y. Li, X. Y. Lin. An improved two-step approach to hallucinating faces. The 3rd International Conf. Image and Graphics, Hong Kong, 2004.
  • 8B.K. Gunturk, A. U. Batur, Y. Altunbasak, et al. Eigenfacedomain super-resolution for face recognition. IEEE Trans. Image Processing, 2003, 12(5): 597~605.
  • 9J.S. Park, S. W. Lee. Resolution enhancement of facial image based on topdown learning. ACM SIGMM 2003 Workshop on Video Surveillance, Berkeley, CA, USA, 2003.
  • 10J.S. Park, S. W. Lee. Resolution enhancement of facial image using an error back-projection of example-based learning. The 6th IEEE International Conf. Automatic Face and Gesture Recognition, Seoul, Korea, 2004.

二级参考文献6

  • 1Elad M, Feuer A. Restoration of a single superresolution image from several blurred, noisy and undersampled measured images [J]. IEEE Trans on Image Processing, 1997,6(10) : 1 646-1 658.
  • 2Patti A J, Sezan M I, Tekalp A M. Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time [J]. IEEE Trans on Image Processing, 1997,6(8):1 064-1 076.
  • 3Baker S,Kanade T. Limits on super-resolution and how to break them [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (9) : 1 167-1 183.
  • 4Borman S, Stevenson R L. Super resolution from image sequence-a review [A]. Midwest Symposium on Circuits and Systems, Notre Dame, 1998.
  • 5Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images [J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1984,9(6): 721-742.
  • 6Yang Y, Galatsanos N. Removal of compression artifacts using projections onto convex sets and line process modeling [J]. IEEE Trans on Image Processing, 1997,6(10):1 345-1 357.

共引文献10

同被引文献93

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部