期刊文献+

形状记忆合金梁动力稳定性 被引量:8

Dynamic Stability of a Shape Memory Alloy Beam
在线阅读 下载PDF
导出
摘要 基于形状记忆合金材料的热-力学行为和拟弹性行为本构关系及梁的动力学平衡方程,建立了该类梁横向振动非线性动力学模型.用平衡态定性分析法讨论了形状记忆合金梁的稳定性与材料相变的关系.研究表明,梁的横向振动平衡态的稳定性与材料相的稳定性有对应关系.在马氏体相稳定的低温状态,系统有3个不动点,1个为稳定中心,另外2个为不稳定鞍点;在马氏体与奥氏体共存的中间温度状态,系统有5个不动点,3个为稳定的中心,2个为不稳定的鞍点;在奥氏体相稳定的高温度状态,系统有唯一稳定不动点. A nonlinear dynamics model was derived based on the constitutive equations of the thermomechanical and pseudoelastic behaviors of shape memory alloy (SMA) and the dynamic equilibrium equations of an SMA beam. The analytic results show that the transverse vibration stability of the beam corresponds to the equilibriums of the phase transformations. At lower temperature where martensite is stable, there are three fixed points: one representing stable center and the other two describing unstable saddle points. At the middle temperature where both martensite and austenite coexist, there are five fixed points: three representing stable centers and the other two describing unstable saddle points. At high temperature where austenite is the exclusive stable phase, there is only one fixed point representing a stable center.
出处 《西南交通大学学报》 EI CSCD 北大核心 2005年第4期453-456,共4页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(10472097)
关键词 稳定性 形状记忆合金 振动 不动点 相变 stability shape memory alloy beam vibration fixed point phase transformation
  • 相关文献

参考文献7

  • 1Machado L G, Savi M A, Pacheco P M. Nonlinear dynamics and chaos in coupled shape memory oscillators [ J ].International Journal of Solids and Structures, 2003, 40: 5 139-5 156.
  • 2Collet M, Foltete E, Lexcellent C. Analysis of the behavior of a shape memory alloy beam under dynamical loading [ J ].European Journal of Mechanics, A/Solids, 2001,20: 615 630.
  • 3Savi M A, Pacheco P M, Brags M B. Chaos in shape memory two-bar truss [ J ]. International Journal of Non-Linear Mechanics, 2002, 37:1 387-1 395.
  • 4Seelecke S. Modeling the dynamic behavior of shape memory alloys [ J ]. International Journal of Non-Linear Mechanics,2002, 37:1 363-1 374.
  • 5Tsai X Y, Chen L W. Dynamic of a shape memoryall wire reinforeed composite beam[ J ]. Composite structures, 2002, 56:235 -241.
  • 6Birman V. Review of mechanics of shape memory alloy structures [ J]. Applied Mechanics Review, 1997, 50: 629-645.
  • 7Falk F. Model free energy, mechanics, and thermodynamics of shape memory alloys[J]. Acta Metall, 1980, 28:1 773-1 780.

同被引文献39

  • 1张清泉,李映辉,姚进.形状记忆合金梁动力稳定性及混沌运动[J].四川大学学报(工程科学版),2004,36(5):30-34. 被引量:9
  • 2王征,陶宝祺.智能材料结构的振动抑制[J].振动.测试与诊断,1995,15(1):47-51. 被引量:6
  • 3徐伟,李伟,靳艳飞,赵俊锋.耦合Duffing-van der Pol系统的首次穿越问题[J].力学学报,2005,37(5):620-626. 被引量:7
  • 4Spanos P D, Cacciola P, Redhorse J.Random vibration of SMA systems via Preisach formalism [J].Nonlinear Dynamics, 2004, 36(2): 405-419.
  • 5S M T.Hashimei, S E Khadem.Modeling and analysis of the vibration behavior of a shape memory alloy beam[J].International Journal of Mechanical Sciences, 2006, 48(1): 44-52.
  • 6Machado L G, Sad M A, Pacheco P M.Nonlinear dynamics and chaos in coupled shape memory oscillators[J].International Journal of Solids and Structures, 2003, 40(19): 5139-5156.
  • 7Tsai X Y, Chen L W.Dynamic of a shape memory all wire reinforced composite beam [J].Composite Structures, 2002, 56(3): 235-241.
  • 8Zhu WQ, Huang ZL.Stochastic stability of quasi -non-integrable-Hamiltonian systems[J].Journal of Sound and Vibration, 1998, 218(5): 769-789.
  • 9Zhu WQ, Huang ZL.Stochastic Hopf bifurcation of quasi- non-integrable-Hamiltonian systems[J].International Journal of Nonlinear Mechanics, 1999, 34(3): 437-447.
  • 10Tanaka K. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior [ J]. Res Mechanics, 1986,18 : 251 -263.

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部