摘要
用快速Galerkin方法[1]结合Floquet理论和数值积分方法,对采用短轴承模型的刚性Jefcott转子系统在较宽的参数范围进行分叉研究。计算结果表明,系统存在倍周期和Hopf分叉。根据Floquet乘数,得到了分叉转迁集并分析了润滑油粘度的变化对系统Hopf分叉的影响。用数值方法得到系统在某些参数域中的分叉图、时间历程、相图、轨迹图以及Poincaré映射和频谱图。数值积分结果验证了所得分叉转迁集的正确性,同时直观地显示了系统的某些运动状态。分析结果为定性地控制转子的稳定运行状态提供了理论依据。
The bifurcations of a rigid Jeffcott rotor system based on short bearing model is studied in a relatively wide parameter range with fast Galerkin method in combination with Floquet theory and numerical integral method.The result of the calculation shows that may the undergo period doubling or Hopf bifurcations,in accordance with Floquet multipliers,the transition boundaries of the system are obtained and the effect of the variations of lubricant viscosity on the Hopf bifurcation point of the system is analysed.In some typical parameter regions the bifuration diagrams, the time histories, the phase portrait the Poincaré maps and the frequency spectrums of the system are acquired with numerical integral method. They verify the correctness of the transition boundaries and in the meanwhile,demonstrate some motion state of the system. The analysis result of this paper provides the theoretical bases for qualitatively controling the stable operating state of rotors.
出处
《振动工程学报》
EI
CSCD
1996年第3期266-275,共10页
Journal of Vibration Engineering
基金
天津市自然科学基金部分
关键词
转子动力学
非线性
转子
轴承系统
rotor dynamics
nonlinear rotor bearing system
Hopf bifurcation
period doubling
stability