期刊文献+

透镜与样品之间距离对激光等离子体辐射特性的影响 被引量:6

Effect of Lens-to-Sample Distance on Laser-Plasma Radiative Properties
在线阅读 下载PDF
导出
摘要 采用高能量钕玻璃激光器产生的激光(~25J)在减压氩气环境下诱导钢和土壤样品等离子体,研究了激光束聚焦透镜(f=130 mm)与样品之间距离对等离子体辐射特性的影响.实验结果表明,当聚焦透镜的焦点围绕样品表面上下移动时,对于合金钢样品,激光束焦斑位于样品表面以下0.4 mm左右,则激光等离子体的辐射强度、激发温度和物质烧蚀质量均出现最大值;而对于土壤样品,当激光束聚焦位置在样品表面以下0.2 mm左右,等离子体辐射强度和物质烧蚀质量具有最大值.为了比较透镜与样品之间距离对等离子体形状的影响,也拍摄了氩气和空气环境下产生的激光等离子体象.所得结果证明,激光等离子体特性明显依赖于透镜与样品之间距离. In the present paper, the effect of lens-to-sample distance (LTSD) on the radiative properties from the plasma induced by a high-energy neodymium glass laser (~25J) in the argon ambient gas at a pressure of 0.43 × 10^5 Pa was studied. The experimental results showed that when the focus point of the focusing lens (f= 130 mm) shifts above and below the sample surface, the radiation intensities of the plasma, the excitation temperature, and the mass of ablated material are all changed, and their maxia appear at a focusing location of the laser beam, which is about 0.4 mm under the sample surface for alloyed-steel samples. If soil samples are used as the targets, the emission intensities of the laser plasma and the mass of ablated material have the maxima at a focus position about 0.2 mm below the sample surface. To investigate the influence of LTSD on the shape of the laser plasma, the images of the plasma formed have been shot in argon and air for the alloyed-steel samples. From these results, it was found that the properties of the laser plasma depend strongly on the LTSD.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2005年第10期1693-1696,共4页 Spectroscopy and Spectral Analysis
基金 河北省科技厅攻关项目(02820180D)资助
关键词 激光诱导等离子体 透镜与样品的距离 辐射强度 激发温度 烧蚀质量 Laser-induced plasma Lens-to-sample distance Radiation intensity Excitation temperature Ablation mass
  • 相关文献

参考文献9

  • 1Grant K J. Paul G L. Appl. Spectros., 1990, 44(8) : 1349.
  • 2Kuzuva M, Matsumoto H, Takechi H. Appl. Spectros. , 1993, 47(10): 1559.
  • 3Aucelio R Q, Castle B C. Smith B W, et al. Appl. Spectros., 2000, 54(6) :832.
  • 4Hybl J D, Lithgow G A, Bucldey S G. Appl. Spectro., 2003, 57(10) : 1207.
  • 5Satta M, Zeng X, Mao X, et al. Appl. Spectro. , 2003, 57(7): 737.
  • 6Multari R A, Foster L E, Cremers D A, et al. Aool. Soectros., 1996, 50(12) : 1483.
  • 7Aragon C A, Aguilera J A, Penalba F. Appl. Spectros., 1999, 53(10): 1259.
  • 8陈金忠,赵书瑞,魏艳红,郭庆林,怀素芳.环境气氛对高能量激光诱导等离子体辐射特性的影响[J].光谱学与光谱分析,2005,25(3):341-345. 被引量:8
  • 9陈波,尼启良,曹继红.激光等离子体光源软X射线反射率计[J].光谱学与光谱分析,2005,25(3):453-455. 被引量:9

二级参考文献15

  • 1Iida Y. Appl. Spectrosc., 1989, 43(2): 229.
  • 2Owens M, Majidi V. Appl. Spectrosc., 1991, 45: 146.
  • 3Kuzuya M, Matsumoto H, Takechi H et al. Appl. Spectrosc., 1993, 47: 1659.
  • 4Budi W S, Baskoro W T, Pardede M, Kurniawan H, Tjia M, Kagawa K. Appl. Spectrosc., 1999, 53(11): 1347.
  • 5Knight A K, Scherbarth N L, Cremers D, Ferris M J. Appl. Spectrosc., 2000, 54(3): 331.
  • 6Harilal S S, Bindhu C V, Nmapoori V P N, Vallabhan C P G. Appl. Phys. Lett., 1998, 72(2): 167.
  • 7Underwood J H, Gullikson E M, Koike M, Baston P J, Denham P E, Franck K D, Tackaberry R, Steele W F. Rev. Sci. Instrum.,1996, 67: 3372.
  • 8Fuchs D, Krumrey M, Muller P, Scholze F, Ulm G. Rev. Sci. Instrum., 1995, 66: 2248.
  • 9Trail J A, Byer R L, Barbee T W Jr. Appl. Phys. Lett., 1988, 52: 269.
  • 10Nakayama S, Yanagihara M, Yamamoto M, Kimura H, Namioka T. Phys. Scr., 1990, 41: 754.

共引文献15

同被引文献101

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部