期刊文献+

等离子体填充盘荷波导高频特性分析

High-frequency properties of the disk-loaded waveguide filled with plasma
原文传递
导出
摘要 从麦克斯韦方程和流体理论出发,推导了填充磁化等离子体慢波结构的基本方程.在大磁场情况下,对等离子体填充盘荷波导的色散特性和耦合阻抗作了研究,结果表明填充等离子体使色散曲线上移,耦合阻抗提高.等离子体填充产生出模式谱非常丰富的周期性低频等离子体模式(TG模式).当等离子体密度增加到一定程度后,场模TM01模的频率范围和TG01模的频率范围相近,两个模式互相耦合产生出新的混合模G1,G2.如果相对论行波管工作在混合模上,将会产生新的工作机理. Based on the Maxwell equations, the general equation of the slow-wave structure filled with plasma in the finite magnetic field is derived. The dispersion equation and interaction impedance expression of the disk-loaded waveguide filled with plasma in the strong longitudinal magnetic field are studied. The result shows that the frequency of the TM01 mode upshifts and interaction impedance increases as the density of the plasma increases. When a periodic structure is loaded with plasma, the spectrum consists of abundant TG modes (Trivelpiece-Gould modes). As the plasma density increases to a certain degree, the TM01 mode of the disk-loaded waveguide overlaps the TG mode and these two modes will couple with each other and form the new hybrid modes G1, G2. If the relativistic Traveling-Wave Tube (TWT) works on the hybrid mode, there will be new working mechanism.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第11期5239-5245,共7页 Acta Physica Sinica
基金 电子科技大学科研启动基金资助的课题.~~
关键词 盘荷波导 等离子体填充 色散特性 相对论行波管 磁化等离子体 盘荷波导 填充 特性分析 高频 麦克斯韦方程 耦合阻抗 等离子体密度 相对论行波管 disk-loaded waveguide, plasma filled, dispersion characteristics, relativistic traveling-wave tube
  • 相关文献

参考文献2

二级参考文献17

  • 1戴振铎 鲁述.电磁理论中的并矢格林函数[M].湖北:武汉大学出版社,1996..
  • 2[1]Pierce J R and Field L M 1947 Proc.IRE 35(2) 108
  • 3[3]Minami K,Carmel Y,Victor L et al 1990 IEEE Trans. Plas.Sci. 18(3) 537
  • 4[6]Gao H and Liu S G 2000 Chin. Phys. 9 274
  • 5[7]Liu S G, Barker R J, Zhu D J et al 2000 IEEE Trans. Plas. Sci. 28 2135
  • 6[8]Liu S G, Barker R J,Yan Y et al 2000 IEEE Trans. Plas. Sci. 28 2152
  • 7[10]Kobayashi S, Antonsen T M, Jr et al 1998 IEEE Trans.Plas.Sci. 26(3) 669
  • 8[11]Nusinovich G S, Carmel Y, Antonsen T M et al 1998 IEEE Trans.Plas.Sci. 26(3) 628
  • 9[12]Zavjalov M A, Mitin L A, Perevodchicov V I et al 1994 IEEE Trans Plas.Sci. 22(5) 600
  • 10[14]Trivelpiece A W, Gould R W 1959 J. Appl. Phys. 30 1784

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部