期刊文献+

赤潮随机梯度回归分析 被引量:4

Stochastic Gradient Regression Analysis of HAB
在线阅读 下载PDF
导出
摘要 赤潮的危害日益严重,为了预测赤潮的发生,运用回归树的随机梯度Boosting算法分析渤海赤潮数据,建立浮游植物总量与环境因子的定量关系,给出各种环境因子对浮游植物总量相对影响的大小以及浮游植物总量和各种环境因子偏相关的图形,有利于探索赤潮的发生机制,指导菌种的培养。最后,相比其它算法,回归树的随机梯度Boosting对于“局部剧增”的赤潮数据是稳健的,而且具有较高的预测精度。 It is of great importance to predict occurrence of HAB since its harmful results are getting more and more serious. Moreover, functional relation, Relevant effect and partial dependence graphics between phytoplankton and each environmental factor can be concluded from survey data about HAB in Baohai by Stochastic Gradient Boosting of Regression Tree, which is essential for the research of cause of HAB and instruction of incubation of thalli. It is showing that stochastic gradient boosting which have better performance than support vector regression, artifical neural network, MARS and project pursuit regression is more robust to HAB data which is locally sharply increased.
出处 《海洋技术》 2005年第3期65-69,共5页 Ocean Technology
基金 国家自然科学基金资助项目(104723077)
关键词 赤潮 回归树 随机梯度Boosting 支持向量回归 MARS Red tide Regression Tree Stochastic Gradient Boosting Support Vector Regression MARS
  • 相关文献

参考文献18

  • 1王洪礼,冯剑丰,李超,沈菲.多种群赤潮生态模型的非线性动力学研究[J].天津大学学报(自然科学与工程技术版),2003,36(4):400-403. 被引量:6
  • 2黄奕华,楚建华,齐雨藻.南海大鹏湾盐田海域骨条藻数量的多元分析[J].海洋与湖沼,1997,28(2):121-127. 被引量:22
  • 3夏综万,于斌,史键辉,王寿松.大鹏湾的赤潮生态仿真模型[J].海洋与湖沼,1997,28(5):468-474. 被引量:31
  • 4S H Fukuju, T Takahashi, T Kawayoke. Statistical Analysis of Fresshwater Redtide in Japanese Reservoirs[J]. Water Science and Technology,1998, 37(2):203-210.
  • 5Chen Qiuwen, E M Arthur. Predictiong phaeocystis globosa bloom in Dutch coastal waters by decision trees and nonlinear piecewise regression[J]. Ecological Modelling, 2004, 176:277-290.
  • 6V Vapnik. The Nature of Statistical Learning Theory [M]. Springer,N Y,1995.
  • 7J Fredman. Multivariate adaptive regression splines(with discussion)[J]. The annals of statistics,1991, 19:1-141.
  • 8J H Friedman, W Stuetzle. Projection pursuit regression[J]. J Amer Statist Assoc, 1981,76:817-823.
  • 9L Breiman, J H Friedman, R A Olshen, C J Stone. Classiˉcation and Regression Trees[M].New York: Chapman and Hall, 1984.
  • 10J H Freidman. Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics,2001, 29:1189-1232.

二级参考文献38

共引文献104

同被引文献40

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部