期刊文献+

基于隐马尔可夫模型的用户兴趣漂移模式发现方法 被引量:6

Users' Interest Navigation Patterns Based on Hidden Markov Model
在线阅读 下载PDF
导出
摘要 把隐马尔可夫模型引入到兴趣漂移模式发现方法中,采用概念漂移的思想处理用户兴趣的漂移,拓展了隐马尔可夫模型的应用领域,提出了基于隐马尔可夫模型的用户兴趣漂移方法,由此可以发现用户带有兴趣的漂移模式,反映用户的访问偏好. This article adopted concept drift to disposal users interest drift, and a new method for users' interest navigation patterns based on hidden markov model in order to discover users' interest navigation patterns was presented.
作者 张勉
出处 《北京建筑工程学院学报》 2005年第3期50-52,共3页 Journal of Beijing Institute of Civil Engineering and Architecture
基金 北京建筑工程学院青年科学基金资助
关键词 用户兴趣漂移 访问偏好 隐马尔可夫模型 interest navigation having a special fondness for calling hidden Markov model
  • 相关文献

参考文献3

二级参考文献17

  • 1Chen M S,IEEE Trans Knowledge Data Engineering,1998年,10卷,2期,209页
  • 2黄希庭.认知心理学[M].北京:中国轻工业出版社,2000..
  • 3Grabtree I, Soltysiak S. Identifying and Tracking Changing Interests[J]. International Journal of Digital Libraries, 1998, 2( 1 ): 38.
  • 4Widmer G, Kubat M. Learning in the Presence of Concept Drift and Hidden Contexts[J]. Machine Learning, 1996,23(1 ): 69.
  • 5Maloof M, Michalski S. Learning Evolving Concepts Using a Partial Memory Approach[C]. Working Notes of the AAAI Fall Symposium on Active Learning, Boston, MA, 1995-11 : 10-12.
  • 6Widmer G. Tracking Changes Through Meta-Learning [J]. Machine Learning, 1997,27(3):259-286.
  • 7Koychev I. Gradual Forgetting for Adaptation to Concept Drift[C]. Proceedings of ECAI 2000 Workshop, 2000:101.
  • 8Anand S S, Patrick A R, Hughes J G. A data mining methodology for cross-sales. Knowledge Based Systems Journal, 1998,10(7):449~461
  • 9Park J S, Chen M S, Yu P S. Using A hash-based method with transaction trimming for mining association rules. IEEE Transactions on Knowledge and Data Eng., 1997, 9(5):813~825
  • 10Bfichner A G, Baumgarten M, Artand S S. Navigation pattern discovery from internet data. In: Proceedings of the 5th ACM International Conference on Knowledge Discovery and Data Mining (WEBKDD′99 Workshop) (SIGKDD′99), New York, 1999.25~30

共引文献124

同被引文献34

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部