期刊文献+

数学学习中的记忆与理解 被引量:3

On the Recollection and Understanding in Mathematics Learning
在线阅读 下载PDF
导出
摘要 数学记忆与数学理解在数学学习中的重要性随着新课程改革悄然发生着变化.对数学记忆和数学理解进行了细致分析,指出数学学习中记忆仍然是重要的,但要科学记忆,数学学习重在理解,理解是不断对知识进行建构的过程.对数学记忆和理解的关系进行了剖析,不可孤立看待记忆和理解,从系统观看,二者交织相融,相互促进.新课程改革中,数学记忆和理解应同时并重. The importance of recollection and understanding in mathematical study is changing silently with the carrying of the new course reform. This article analyzes the mathematical recollection and understanding meticulously and points out that the mathematical recollection is very important and we should recollect scientifically. Mathematical study thinks much of the mathematical understanding which is a constinuous progress of construction. Here we anatomy the connection of mathematical recollection and understanding. And we should not look on them apart. Contrarily both blend and promote each other mutually.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2005年第4期125-128,共4页 Journal of Qufu Normal University(Natural Science)
基金 课程教材研究所重点课题(Kc2005-G003) 山东省教育科学"十五"规划重点课题(2004ZZ8)
关键词 数学记忆 数学理解 数学认知 mathematical recollection mathematical understanding mathematical cognization
  • 相关文献

参考文献7

二级参考文献12

  • 1[1]Anderson J R, Farrell R, Sauers R. Learning to program in LISP. Cognitive Science, 1984, 8(1): 87~129
  • 2[2]Pirolli P L, Anderson J R. The role of learning from examples in the acquisition of recursive programming skills. Canadian Journal of Psychology, 1985, 39(2): 240~272
  • 3[3]Gick M L, Holyoak K J. Schema indication and analogical transfer. Cognitive Psychology, 1983, 15(1): 1~38
  • 4[4]Ross B H. Remindings and their effects in learning a cognitive skill. Cognitive Psychology, 1984, 16(3): 374~416
  • 5[5]Ross B H. This is like that: the use of earlier problems and the separation of similarity effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1987, (4): 629~639
  • 6[6]Ross B H. Distinguishing types of superficial similarities: Different effects on the access and use of earlier problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1989, 15(2): 456~468
  • 7[8]Ross B H, Kennedy P T. Generalizing from the use of earlier examples in problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1990, 16(1): 42~55
  • 8[9]Ross B H, Kibane M C. Effect of principle explanation and superficial similarity on analogical mapping in problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1997, 23(2): 427~440
  • 9[10]Blessing S B, Ross B H. Content effects in problem categorization and problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1996, 2(3): 792~810
  • 10[11]Zhu X, Simon H. Learning mathematics from examples and by doing. Cognition and Instruction, 1987, 4(1): 137~166

共引文献63

同被引文献23

  • 1青浦县数学教改实验小组.学会教学[M].北京:人民教育出版社,1991.153-161.
  • 2赵振威.数学发现导论(第2版)[M].合肥:安徽教育出版社,2000.
  • 3加德纳.无限过程-数学的分析背景[M].上海:上海第二工业大学出版社,1984.
  • 4Resnick L B. The Psychology of Mathematics for Instruction [M]. NJ: Lawrence Erlbaum Associates, 1987.
  • 5Watson A. School Mathematics as a Special Kind of Mathematics [J]. For the Learning of Mathematics, 2008, 10(3): 3-7.
  • 6Pirie S E B. Mathematical Investigations in Your Classroom [M]. Basingstoke: Macmillan Publishing Company, 1987.
  • 7威尔逊.中学数学学习评价[M].杨晓青译.上海:华东师范大学出版社,1989.
  • 8Stein M K, Smith M S. Mathematical Tasks as a Framework for Reflection: From Research to Practice [J]. Mathematics Teaching in the Middle School, 1998, 3(4): 268-275.
  • 9Crawford. Conceptions of Mathematics and How It Is Learned: the Perspectives of Students Entering University [J]. Learning and Instruction, 1994, (4): 337.
  • 10Wang T, Cai J. Chinese (Mainland) Teachers' Views of Effective Mathematics. Teaching and Learning [J]. ZDM, 2007, (39): 287-300.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部