期刊文献+

Zakharov系统的雅可比椭圆函数的周期波和孤立波 被引量:1

Periodic Waves and Solitary Waves in Zakharov System by a Jacobi Elliptic Function Approach
在线阅读 下载PDF
导出
摘要 利用行波约化的方法把Zakharov方程组变换成非线性常微分方程,用雅可比椭圆函数展开法对其求解,得到了Zakharov方程的一些新的精确周期波解和孤波解。 By using a traveling wave reduction method, Zakharov equations are changed into a nonlinear ordinary differential equation. By means of Jacobi elliptic function expansion method, some new exact solutions of periodic waves and solitary waves to Zakharove system are obtained.
作者 留庆
出处 《丽水学院学报》 2005年第5期33-37,共5页 Journal of Lishui University
基金 丽水学院重点课题资助项目(KZ03005)
关键词 ZAKHAROV方程 雅可比椭圆函数 行波约化法 Zakharov equations Jacobi elliptic function traveling wave reduction method
  • 相关文献

参考文献15

  • 1Zakharov V E. Collapse of langmair waves[J]. Soy Phy JEEP, 1972, 35:908.
  • 2Thornhill S G, Ter Harr D. Langmuir turbulence and modulational instability[J]. Phys Rep, 1978, 43:43.
  • 3He X T, Zheng C Y. Spatiotemporal Chaos in The Regime of the Conserved Zakharov Equations[J]. Phys Rev Lett, 1995, 74:78.
  • 4He X T, Zheng C Y, Zhu S P. Harmonic modulation instability and spatiotemporal chaos[J]. Phys Rev E, 2002, 66:037 201.
  • 5Weng Mingliang. Solitary wave solutions for variant Boussinesq equations[J]. Phys Lett A, 1995, 199:169.
  • 6Wang Mingliang, Zhou Yubln, Li Zhibln. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematizal physics[J]. Phys Lett A, 1996, 216:67.
  • 7San Engui. Extended tanh-function method and its applications to nonlinear equations[J]. Phys Lett A, 2000, 277:212.
  • 8Peakes E J, Dully B R, Travelling solitary wave solutions to a compound KdV-Burgers equation[J]. Phys Lett A, 1997, 229:217.
  • 9Yan Chuntao. A simple transformation for nonlinear waves[J]. Phys Lett A, 1996, 224:77.
  • 10Hirote R. Exact N - soliton solutions of the wave equation of long waves in shallow - water and in nonlinear lattices[J]. J Math Phys, 1973,14:810.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部