摘要
To investigate effects of Zn on Cd uptake by spring wheat (Triticum aestivum, L.) in solution culture, long-time hydroponic experiment (1 month) (Experiment 1) and short-time Cd isotope (109Cd) tracing experiment (24 h) (Experiment 2) were conducted. In Experiment 1, spring wheat (cv. Brookton) was grown in nutrient solution at uniform cadmium concentration of 20μ mol/L and 10 zinc concentrations (0, 1, 5, 10, 20, 100, 200, 500, 1000, 2000 μ mol/L). In Experiment 2, spring wheat seedlings,pre-cultivated in complete nutrient solution, were treated with 109Cd of uniform activity and the same series of Zn concentrations as those in Experiment 1 for 24 h. Cd concentrations in shoots and roots in Experiment 1 increased marginally but not consistently with Zn increasing at Zn rates of 1~200 μmol/L, and then decreased significantly at high rates (>200 μ mol/L). In Experiment 2, the response of 109Cd activities in shoots and roots to increasing Zn was greatly similar to the response of Cd concentrations to Zn increasing in Experiment 1. The results of the two experiments indicated that the short-time and long-time exposure of spring wheat to Zn had similar effects on Cd accumulation.
To investigate effects of Zn on Cd uptake by spring wheat (Triticum aestivum, L.) in solution culture, long-time hydroponic experiment ( 1 month) (Experiment 1 ) and short-time Cd isotope (^109Cd) tracing experiment (24 h) (Experiment 2) were conducted. In Experiment 1, spring wheat (cv. Brookton) was grown in nutrient solution at uniform cadmium concentration of 20μmol/L and 10 zinc concentrations (0, 1, 5, 10, 20, 100, 200, 500, 1000, 2000 μmol/L). In Experiment 2, spring wheat seedlings, pre-cultivated in complete nutrient solution, were treated with ^109Cd of uniform activity and the same series of Zn concentrations as those in Experiment 1 for 24 h. Cd concentrations in shoots and roots in Experiment 1 increased marginally but not consistently with Zn increasing at Zn rates of 1-200 μmol/L, and then decreased significantly at high rates (〉200 μmol/L). In Experiment 2, the response of ^109Cd activities in shoots and roots to increasing Zn was greatly similar to the response of Cd concentrations to Zn increasing in Experiment 1. The results of the two experiments indicated that the short-time and long-time exposure of spring wheat to Zn had similar effects on Cd accumulation.
基金
Project supported by the National Natural Science Foundation of China (No. 40335046) and the "Recruiting Outstanding Overseas Chinese Scientists" Scheme of the Chinese Academy of Sciences, China