期刊文献+

非均匀B样条曲线升阶的新算法 被引量:10

A NEW ALGORITHM FOR DEGREE-RAISING OF NONUNIFORM B-SPLINE CURVES
在线阅读 下载PDF
导出
摘要 实践证明,传统的B样条曲线升阶算法只能解决端点插值B样条曲线的升阶问题,当用于其它非均匀B样条曲线以及均匀B样条曲线的升阶时均会出现严重错误.本文基于一个新的B样条恒等式,提出了一个B样条曲线升阶的新算法.该算法可用于任何均匀和非均匀的B样条曲线的升阶.当用于一段均匀B样条曲线的升阶时,不需要在节点矢量中间插入任何节点,升阶后仍为一条均匀B样条曲线.其计算简便、速度快.本文最后还得到两个新结论:①在一般情况下,用于升阶的节点矢量是不唯一的,只有端点插值B样条曲线例外.②升阶后的控制多边形不一定更加接近曲线,有时可能离曲线更远.这完全取决于用于升阶的节点矢量.这些结论与传统的升阶理论截然不同.因此,传统的升阶理论不得不进行修正. In this paper,a new algorithm for degree-raising of various B-splinecurves is presented based on a new identity of B-splines. Unlike other algorithmsfor degree raising, the new algorithm, which is easily and efficiently implemented,can ensure that a segment of uniform B-spline curve of degree k becomes a uniformone of degree (k+1) after degree-raising. The conclusions obtained in the papercompletely contradict the existed theory for degree raising,which implies that theconventional theory for degree raising of B--spline curves has to be revised.
作者 秦开怀
出处 《计算机学报》 EI CSCD 北大核心 1996年第7期537-542,共6页 Chinese Journal of Computers
基金 国家自然科学基金
关键词 B样条 算法 曲线升阶 CAD B-spline, curve, degree-raising, algorithm.
  • 相关文献

参考文献1

二级参考文献3

同被引文献62

  • 1焦李成,谭山,刘芳.脊波理论:从脊波变换到Curvelet变换[J].工程数学学报,2005,22(5):761-773. 被引量:40
  • 2李奇敏,柯映林,何玉林.基于非均匀B样条小波的NURBS曲面光顺[J].中国机械工程,2007,18(5):577-582. 被引量:5
  • 3秦开怀,关右江.B样条曲线的节点插入问题及两个新算法[J].计算机学报,1997,20(6):556-561. 被引量:21
  • 4Cohen E, Lyche T, Schumaker L L. Algorithms for degree-raising of splines [J]. ACM Transactions on Graphics, 1985, 4(3): 171-181.
  • 5Barry P J, Goldman R N. A recursive proof of a B-spline identity for degree elevation[J]. Computer Aided Geometric Design, 1988, 5(2): 173-175.
  • 6Prautzsch H, Piper B. A fast algorithm to raise the degree of spline curves [J]. Computer Aided Geometric Design, 1991, 8(4) : 253-265.
  • 7Huang Q X, Hu S M, Martin R R. Fast degree elevation and knot insertion for B-spline curves [J]. Computer Aided Geometric Design, 2005, 22(2) : 183-197.
  • 8Wang G Z, Deng C Y. On the degree elevation of B-spline curves and corner cutting [J]. Computer Aided Geometric Design, 2007, 24(2): 90-98.
  • 9Tuohy S T, Maekawa T, Shen G, et al. Approximation of measured data with interval B-splines[J]. Computer-Aided Design, 1997, 29(11): 791-799.
  • 10Cohen E, Schumaker L L. Rates of convergence of control polygons [J]. Computer Aided Geometric Design, 1985, 2(1/ 3) : 229-235.

引证文献10

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部