期刊文献+

双参数精确罚函数求解约束优化问题的拟牛顿算法 被引量:6

A Quasi Newton Algorithm for Solving Constrained Optimization on Exact Penalty With Two Parameters
在线阅读 下载PDF
导出
摘要 对于含约束不等式的最优化问题,给出了一种双参数罚函数形式和这种罚函数的精确罚定理,提出了一个求解这种罚函数无约束优化问题的拟牛顿算法,研究了它的收敛性,数值实验表明了该算法是可行的。 We give a two-parameter penalty function and its exact penalty theorem for inequation constrained optimization, meanwhile, we propose a quasi Newton algorithm for solving the unconstrained nonlinear penalty problem and study its convergence. Numerical examples illustrate the feasibility of the algorithm.
出处 《系统工程》 CSCD 北大核心 2005年第10期68-72,共5页 Systems Engineering
基金 湖南省教育厅资助科研项目(03C453)
关键词 最优化 精确罚函数 精确罚定理 拟牛顿算法 Optimization Exact Penalty Function Exact Penalty Theorem Quasi Newton Algorithm
  • 相关文献

参考文献9

  • 1Rosenberg E. Globally convergent algorithm for convex progromming[J]. Mathmatics of Operations Research, 1981, 6(3):437~452.
  • 2Pinar M C,et al.On smoothingexact penalty functions for convex constrains optimization[J]. SIAM Journal on Optimization,1994,4:486~511.
  • 3Mongeau M,et al.Automatic decrease of the penalty parameter in exact penalty functions methods[J].European Journal of Operational Research,1995,83:686~699.
  • 4Rubinov A M,et al.Extened Lagrange and penalty functions in continuous optimization[J]. Optimization,1999,46(3):327~351.
  • 5Rubinov A M,et al.Decreasing functions with applications to penalization[J]. SIAM Journal On Optimization,1999,10(1):289~313.
  • 6Yang X Q,et al. A nonlinear lagrange approach to constrained optimization problems[J]. SIAM Journal on Optimization,2001,11(4):1119~1141.
  • 7孟志青,胡奇英,汪寿阳.一种新的罚函数的精确罚定理[J].自然科学进展,2003,13(3):328-330. 被引量:9
  • 8孟志青.精确罚函数与交叉规划问题的研究[J].西安:西安电子科技大学,2003..
  • 9Lasserre J B. A globally convergent algorithm for exact penalty functions[J]. European Journal of Opterational Research,1981,7:389~395.

二级参考文献12

  • 1[1]Zangwill W I. Nonlinear programming via penalty function. ManagementScience, 1967, 13:334
  • 2[2]Han S P, et al. Exact penalty function in nonlinear programming.Mathematical Programming, 1979, 17:251
  • 3[3]Rosenberg E. Globally convergent algorithms for convex programming. Mathematics of Operations Research, 1981, 6(3): 437
  • 4[4]Lasserre J B. A globally convergent algorithm for exact penalty functions, European Journal of Operational Research, 1981, 7: 389
  • 5[5]Dippillo G, et al. An exact penalty function method with global convergence properties for nonlinear programming problems. Mathematical Programming, 1986, 36:1
  • 6[6]Zenios S A, et al. A smooth penalty function algorithm for networkstructured problems. European Journal of Operational Research,1993, 64:258
  • 7[7]Pinar M C, et al. On smoothing exact penalty functions for convex constraints optimization. SIAM Journal on Optimization, 1994, 4:486
  • 8[8]Mongeau M, et al. Automatic decrease of the penalty parameter in exact penalty functions methods. European Journal of Operational Research, 1995, 83:686
  • 9[9]Rubinov A M, et al. Extended Lagrange and penalty functions in continuous optimization. Optimization, 1999, 46:327
  • 10[10]Rubinov A M, et al. Decreasing functions with applications to penalization. SIAM Journal on Optimization, 1999, 10(1): 289

共引文献8

同被引文献30

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部