期刊文献+

基于BP人工神经网络的水体遥感测深方法研究 被引量:32

Study on remote sensing of water depth based on BP artificial neural networks
在线阅读 下载PDF
导出
摘要 利用Landsat7 ETM+遥感图像反射率和实测水深值之间的相关性,建立了动量BP人工神经网络水深反演模型,并对长江口南港河段水深进行了反演。结果表明:具有较强非线性映射能力的动量BP神经网络模型能较好地反演出长江口南港河段的水深分布情况;由于受长江口水体高含沙量的影响,模型对小于5 m的水深值反演精度较高,而对大于10 m的水深值反演精度较低。 A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between reflectance derived from l_andsat ETM + satellite data and water depth information. Results show that MBPNNM, which exhibits a strong capability of non-linear mapping, allows the water depth information in the study area to be retrieved at a relatively high accuracy level. Affected by the sediment concentration of water in the estuary, MBPNNM enables the retrieval of water depth of less than 5 meters accurately. However, the accuracy is not ideal for the water depth of more than 10 meters.
作者 王艳姣 张鹰
出处 《海洋工程》 CSCD 北大核心 2005年第4期33-38,共6页 The Ocean Engineering
基金 国家自然科学基金重点资助项目(50339010) 国家"十五" "211"资助项目
关键词 长江口 BP神经网络 水深遥感 反演模型 Yangtze River Estuary BP neural network water-depth remote sensing retrieval model
  • 相关文献

参考文献15

  • 1Mgengel V, Spitzer R J. Application of remote sensing data to maping of shallow sear-floor near by Netherlands[J]. International Journal of Remote Sensing, 1991,57 (5): 473 - 479.
  • 2Bierworth P N, T Lee, R Burne. Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery[J]. Photogrammetric Engineering and Remote Sensing, 1993,59(3) :331 - 338.
  • 3Juanita C Sandidge, Ronald J Holyer. Coastal bathymetry from hyperspectral observations of water radiance[J]. Remote Sensing of Environment, 1998,65:341 - 352.
  • 4党福星,丁谦.利用多波段卫星数据进行浅海水深反演方法研究[J].海洋通报,2003,22(3):55-60. 被引量:46
  • 5李纪人.地理信息系统在水利中的应用[J].中国水利,2001(8):67-68. 被引量:48
  • 6陈鸣,李士鸿,孔庆芬.卫星遥感长江口水域水深[J].水利水运工程学报,2003(2):61-64. 被引量:17
  • 7Mausel P D, Brondizio E, Moran E. Assessment of atmospheric correction methods for Landsat TM data applicable to amazon basin LBA research[J]. International Journal of Remote Sensing, 2002,23(13) :2651 - 2671.
  • 8Gyanesh C, Brian M. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges[J]. Transactions on Geoscience and Remote Sensing, 2003,41(11) :2647- 2677.
  • 9NASA Landsat 7 Science Data Users Handbook [OB/OL]. http://ltpwww. gsfc. nasa. gov/IAS/handbook/handbook-toc. html.
  • 10Chavez, P S J R. Image-based atmospheric corrections-revisited and improved[J]. Photogrammetric Engineering and Remote Sensing,1996, 62(9): 1025 - 1036.

二级参考文献17

  • 1平仲良.卫星照片密度和海水深度之间关系研究[J].遥感信息,1982,(4):47-51.
  • 2梁顺林 陈丙咸.MSS可见光波段的水体透视深度研究[J].环境遥感,1989,(3):56-62.
  • 3Lyzenga D R. Passive remote sensing techniques for mapping water depth and bottom features[J]. Applied Optics, 1978,17(3):379-383.
  • 4Weijiet al. Satellite remote sensing bathymetry: A new mechanism for modeling[J].Photogrammetric Engineering and Remote Sensing, 1992,58(5):545-549.
  • 5Baban S M J.The evaluation of different algorithms for bathymetric charting of Lakes using Landsat imagery[J]. Int. J. Remote Sensing,1993, 14(12):2263-2273.
  • 6Philopt W D.Bathymetric mapping with passive multispectral imagery[J].Applied Optics, 1989, 28(8): 1569-1578.
  • 7Philopt W D. Radiative transfer in stratified water:.A single scattering approximation for irradiance[J]. Applied Optics, 1987,26(19):4123-4132.
  • 8Roberts A C B. Shallow water bathymetry using integrated airborne multi-spectral remote sensing[J]. Int. J. Remote Sensing,1999, 20(3):497-510.
  • 9Luczkovich J J. Discrimination of bottom of coral reef, seagrass,meadows,and sand types from space:A domincan republic casestudy[J]. Photogrammetric Engineering and Remote Sensing, 1993, 59(3):385-389.
  • 10Lyzcnga R. Ranote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsatdata [J].Int.J.Remote Sensing, 1981,2(I ):7142.

共引文献102

同被引文献287

引证文献32

二级引证文献216

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部