期刊文献+

基于操作域划分的聚丙烯熔融指数软测量 被引量:11

Operating regime based soft sensing of polypropylene melt flow rate
在线阅读 下载PDF
导出
摘要 讨论了如何建立聚丙烯熔融指数软测量模型及模型更新问题.首先根据聚丙烯反应器中的氢气浓度划分操作域,对于每个操作域,用一种新的非线性部分最小二乘方法建立熔融指数软测量子模型,然后将各个子模型进行组合,建立全局模型.为了使模型适应过程的变化,提出一种递推非线性部分最小二乘算法,利用新获得的数据对原模型进行更新.同时基于滑动窗方法,提出模型在线估计和更新策略.实际应用结果表明,模型取得了很好的估计性能,计算精度满足工业生产的实际要求. Operating regime based soft sensing model of polypropylene melt flow rate (MFR) was developed. First, different operating regimes were determined according to the concentration of hydrogen in the reactor. Then for each operating regime, a nonlinear PLS (NLPLS) model was built by combining PLS with RBF networks. Finally, all the sub-models were combined to formulate the global model. To deal with the problem that the process changed with time, a recursive nonlinear PLS (RNPLS) algorithm was proposed to update the model to adapt process changes. In addition, an on-line model estimation and updating procedure based on moving window approach was proposed. The proposed method was used in an actual plant, and the results showed that the model achieved quite good performance and the accuracy of the model could satisfy the practical need.
出处 《化工学报》 EI CAS CSCD 北大核心 2005年第10期1915-1921,共7页 CIESC Journal
关键词 软测量 非线性部分最小二乘 递推非线性部分最小二乘 操作域 聚丙烯 熔融指数 soft sensing nonlinear PLS recursive nonlinear PLS operating regime polypropylene melt flow rate
  • 相关文献

参考文献14

  • 1曹劲,王桂增,徐博文.基于鲁棒自适应RBF网络的聚丙烯熔融指数预报[J].控制与决策,1999,14(4):339-343. 被引量:15
  • 2孔薇,杨杰.基于径向基神经网络的聚丙烯熔融指数预报[J].化工学报,2003,54(8):1160-1163. 被引量:20
  • 3李春富,王桂增,徐博文.聚丙烯熔融指数软测量[J].化工自动化及仪表,2002,29(5):22-25. 被引量:15
  • 4Geladi P, Kowalski B R. Partial least squares regression: A tutorial. Analytica Chimica Acta,1986,185:1-17
  • 5Kaspar M, Ray W H. Partial least squares modeling as successive singular value decompositions. Comput. Chem. Eng.,1993,17:985-989
  • 6Hskuldsson A. PLS regression methods.Journal of Chemometrics,1988,2:211-228
  • 7Wold S, Kettaneh-Wold N, Skagerberg B. Nonlinear PLS modeling. Chemometrics Intell. Lab. Syst.,1989,7:53-65
  • 8Qin S J, McAvoy T J.Nonlinear PLS modeling using neural network.Comput. Chem. Eng.,1992,16(4):379-391
  • 9Wilson D J H, Irwin G W, Lightbody G.Nonlinear PLS modeling using radial basis functions. In: Proceedings of the American Control Conference.Albuquerque, New Mexico:1997
  • 10Li C, Wang G. A clustering method and its application to the modeling of RBF networks. In: Proceedings of the Sixth International Conference for Young Computer Scientist, 2001: 173-177

二级参考文献7

共引文献29

同被引文献99

引证文献11

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部