期刊文献+

基于最大后验概率的逆半调改进方法 被引量:7

Improved Inverse Halftoning Method via Maximum A Posteriori
在线阅读 下载PDF
导出
摘要 针对Bayesian算法以误差分散核为先验、时空复杂度高的缺点,提出一种逆半调改进算法. 首先根据误差分散半调图的噪声特性设计去噪预处理器,然后以预处理图像为初始值,依据最大后验概率准则,采用基于矩阵运算的迭代方法估计逆半调图像. 所构造的逆半调算法与Bayesian算法相比,逆半调图像平滑且边缘清晰,时空复杂度大大降低. 仿真结果表明:N×N维图像的空间复杂度由8N2降至81N,运行时间降为原来的15%左右;采用Floyd-Steinberg 半调图,该算法的峰值信噪比(PSNR)与小波算法相当,采用Jarvis半调图,PSNR值较小波算法提高了0.3~3 dB. To overcome Bayesian algorithm's shortcomings of requiring the knowledge of halftone kernel and high computational complexity and memory buffer, an improved method via maximum a posteriori was proposed. According to the characteristic of error-diffused halftone noise a denoising preprocessor was first designed to provide an initial image. Then the inverse halftoning image was obtained by updating the initial with matrix-based iteration scheme. Compared to the Bayesian algorithm, the resulting image of the proposed algorithm is smooth with sharp edges, while computational complexity and memory buffer are quite reduced. Experiments show that memory requirement is decreased from 8N2 to 81N and run time is reduced to 15% or so for an image of size N× N. The peak signal noise ratio performance for Floyd-Steinberg is almost the same as that of the wavelet algorithm, but for other kernels like Jarvis it is increased by 0.3 to 3 dB.
作者 郑海红 曾平
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第12期1340-1343,1357,共5页 Journal of Xi'an Jiaotong University
基金 陕西省自然科学基金资助项目(2001x06)
关键词 逆半调 最大后验概率 误差分散 去噪预处理器 inverse hal ftoning maximum a posteriori error diffusion denoising preprocessor
  • 相关文献

参考文献8

  • 1Venkata N D, Kite T D, Venkataraman M, et al. Fast blind inverse halftoning [A]. 1998 International Conference on Image Processing [C]. Los Alamitos, USA: IEEE Comput Soc, 1998. 64-68.
  • 2Kite T D, Venkata N D, Evans B L,et al. A high quality, fast inverse halftoning algorithm for error diffusion halftones [A]. 1998 International Conference on Image Processing [C]. Los Alamitos, USA: IEEE Comput Soc, 1998. 59-63.
  • 3Wong P W. Inverse halftoning and kernel estimation for error diffusion [J]. IEEE Transactions on Image Processing, 1995,4(4):486-498.
  • 4Shen M Y, Kuo C C J. A robust nonlinear filtering approach to inverse halftoning [J]. Journal of Visual Communication and Image Representation, 2001,12(1):84~95.
  • 5Xiong Z, Orchard M, Ramchandran K. Inverse halftoning using wavelets [J]. IEEE Transactions on Image Processing, 1999,8(10):1 479-1 483.
  • 6Stevenson R L. Inverse halftoning via MAP estimation [J]. IEEE Transactions on Image Processing, 1997,6(4): 574-583.
  • 7Kite T D, Evans B L, Bovik A C. Modeling and quality assessment of halftoning by error diffusion[J]. IEEE Transactions on Image Processing, 2000,9(5): 900-922.
  • 8Jarvis J, Judice C, Ninke W. A survey of techniques for displaying of continuous-tone pictures on bilevel displays [J]. Computer Graphics Image Processing, 1976,5(1):13-40.

同被引文献63

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部