期刊文献+

基于放大因子和延伸方向研究流形学习算法 被引量:24

Investigating Manifold Learning Algorithms Based on Magnification Factors and Principal Spread Directions
在线阅读 下载PDF
导出
摘要 流形学习是一种新的非监督学习方法,可以有效地发现高维非线性数据集的内在维数和进行维数约简,近年来越来越受到机器学习和认知科学领域研究者的重视.虽然目前已经出现了很多有效的流形学习算法,如等度规映射(ISOMAP)、局部线性嵌套(Locally Linear Embedding,LLE)等,然而,对观测空间的高维数据与降维后的低维数据之间的定量关系,尚难以直观地进行分析.这一方面不利于对数据内在规律的深入探察,一方面也不利于对不同流形学习算法的降维效果进行直观比较.文中提出了一种方法,可以从放大因子和延伸方向这两个方面显示出观测空间的高维数据与降维后的低维数据之间的联系;比较了两种著名的流形学习算法(ISOMAP和LLE)的性能,得出了一些有意义的结论;提出了相应的算法从而实现了以上理论.对几组数据的实验表明了研究的有效性和意义. As a new unsupervised learning technique, manifold learning has captured the attention of many researchers in the field of machine learning and cognitive sciences. The major algorithms include Isometric mapping (ISOMAP) and Locally Linear Embedding (LLE). The approaches can be used for discovering the intrinsic dimensions of nonlinear high-dimensional data effectively and aim researchers to analyze the data better. How to quantitatively analyze the relationship between the intrinsic dimensions and the observation space, however, has fewer reports. And thus further works in manifold learning may have suffered some difficulties. The paper focuses on two kinds of manifold learning algorithms (ISOMAP, LLE), and discusses magnification factors and principal spread directions from the observation space to the intrinsic low-dimensional space. Also the corresponding algorithm is proposed. Experiments show the effectiveness and advantages of the research.
出处 《计算机学报》 EI CSCD 北大核心 2005年第12期2000-2009,共10页 Chinese Journal of Computers
基金 IIPL-04-014 国家杰出青年科学基金(60325207) 国家自然科学基金重大项目(60496320)资助.
关键词 流形学习 放大因子 主延伸方向 局部线性嵌套 等度规映射 manifold learning magnification factors principal spread directions locally linearembedding isometric mapping
  • 相关文献

参考文献13

  • 1Hastie Trevor,Tibshirani Robert,Friedman Jerome.The Element of Statistical Learning:Data Mining,Inference,and Prediction.New York:Springer,2001
  • 2Lu Haw-Minn,Fainman Yeshaiahu,Robert Hecht-Nieslen.Image manifolds.In:Nasrabadi N.M.,Katsaggelos A.K.eds.Applications of Artificial Neural Networks in Image Processing Ⅲ.Proceedings of SPIE.Bellingham,Washington:SPIE,1998,3307:52~63
  • 3Hyvárinen A.Survey on independent component analysis.Neural Computing Surveys,1999,2:94~128
  • 4Turk M.,Pentland A.Eigenfaces for recognition.Journal of Cognitive Neuroscience,1991,3(1):71~86
  • 5Gonzalez R.C.,Woods R.E.Digital Image Processing.Second Edition.Beijing:Publishing House of Electronics Industry,2003
  • 6Zhang Jun-Ping,Li Stan Z.,Wang Jue.Manifold learning and applications in recognition.In:Tan Yap Peng,Yap Kim Hui,Wang Lipo eds.Intelligent Multimedia Processing with Soft Computing.Heidelberg:Springer-Verlag,2004
  • 7Zhang Jun-Ping,He Li,Zhou Zhi-Hua.Analyzing magnification factors and principal spead directions in manifold learning.In:Proceedings of the 9th Online World Conference on Soft Computing in Industrial Applications (WSC9),2004
  • 8Tenenbaum J.B.,de Silva V.,Langford J.C.A global geometric framework for nonlinear dimensionality reduction.Science,2000,290:2319~2323
  • 9Roweis S.T.,Lawrance K.S.Nonlinear dimensionality reduction by locally linear embedding.Science,2000,290:2323~2326
  • 10Bishop C.M.,Svensén M.,Williams C.K.I.Magnification factors for the GTM algorithm.In:Proceedings of the IEE 5th International Conference on Artificial Neural Networks,Cambridge,UK,1997,64~69

同被引文献339

引证文献24

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部