期刊文献+

一类正极值指标的截尾估计量 被引量:3

Censoring Estimators of a Positive Tail Index
在线阅读 下载PDF
导出
摘要 引入了一类位置不变的Hill型极值指数估计量,并证明了其弱相合性;在二阶正规变化条件下,得到了此类估计量的渐近正态性. A kind of location invariant positive extreme value index estimators was proposed, and the weak consistency properties of this kind of index estimators was proved. Under second regularly varying condition, the asymptotic normality of those index estimators was derived.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期971-975,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(70371061) 重庆自然科学基金资助项目(CSTC 2005BB8098)
关键词 极值指数 位置不变 Hill型估计量 tail index location invariant index estimators
  • 相关文献

参考文献8

  • 1Pickands J.Statistical Reference Using Extreme Order Statistics[J].Annstatist,1975,3:119-131.
  • 2Dekkers L M,Einmahl J H,De Haan L.A Moment Estimator for the Index of an Extreme-Value Distribution[J].Ann Statistics,1989,4:1833-1855.
  • 3Hill B M.A Simple General Approach to Inference About the Tail of a Distribution[J].Ann Statist,1975,3:1163-1174.
  • 4Gomes M I,Oliverira O.Censoring Estimators of a Positive Tail Index[J].Statistics Probability Letters,2003,65:147-159.
  • 5Fraga Alves M I.A Location Invariant Hill-Type Estimator[J].Extremes,2001,3:199 -217.
  • 6Qi Yongcheng,Chen Shihong.Convergence of Pickands Estimator[J].Chinese Science Bulletin,1992,37:1409-1413.
  • 7Bishop Y M,Fienberg S,Holland P.Discrect Multivariate Analysis[M].Cambride:M I T Press,1975.
  • 8陶宝,彭作祥.关于分布函数属于D(Λ)吸引场的充要条件[J].西南师范大学学报(自然科学版),2004,29(6):924-928. 被引量:5

二级参考文献4

  • 1Gnedenko B V. Sur la Distribution Limitedu Teme d'une Serie Aleatoire [J]. Ann Math, 1943, 44:423 -453.
  • 2De Haan L. On Regular Variation and Its Application to the Weak Convergence of Sample Extremes [M]. Amsterdan;Mathematical Centre, 1970. 31 - 116.
  • 3Sweeting T. On Domains of Uniform Local Attraction in Extreme Value Theory [J]. Ann Probability, 1985, 13: 196 - 205.
  • 4Resnick S I. Extreme Values, Regular Variation, and Point Processes [M]. New York: Springer-Verlag, 1987. 3-67.

共引文献4

同被引文献22

  • 1陶宝,彭作祥.分布函数上尾端点估计量的渐近性质[J].西南师范大学学报(自然科学版),2006,31(6):40-45. 被引量:2
  • 2邹佶叡,凌成秀.渐近无偏矩估计量(英文)[J].西南师范大学学报(自然科学版),2006,31(3):19-23. 被引量:4
  • 3王淑良,彭作祥.一类新的矩型估计量(英文)[J].西南大学学报(自然科学版),2007,29(5):61-65. 被引量:4
  • 4[1]Hill B.A Simple General Approach to Inference About the Tail of a Distribution[J].Ann Statist,1975,3(5):1163 -1174.
  • 5[2]Mason D M.Laws of Large Numbers for Sums of Extreme Values[J].Ann Probab,1982,10(3):754-764.
  • 6[3]Deheuvels P,Haeusler E,Mason D M.Almost Sure Convergence of the Hill Estimator[J].Math Proc Cambridge Phi los,1988,104(22):371-381.
  • 7[4]Dekkers A L M,De Hann L.On the Estimation of the Extreme-Value Index and Large Quantile Estimation[J].Ann Statist,1989,17(4):1795-1832.
  • 8[5]Dekkers A L M,Einmahl J H J,Dehann L.A Moment Estimator for the Index of an Extreme-Value Distribution[J].Annals of Statistics,1989,17(4):1833-1855.
  • 9[6]Sidney I Resnick.Extreme Values,Regular Variation,and Point Processes[M].Berlin:Springer,1987:22-23.
  • 10HILL B M. A Simple General Approach to Inference about the Tail of a Distribution [J].The Annals of Statistics, 1975, 3(5): 1163-1174.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部